3,443 research outputs found

    A universal density slope - velocity anisotropy relation for relaxed structures

    Full text link
    We identify a universal relation between the radial density slope \alpha (r) and the velocity anisotropy \beta (r) for equilibrated structures. This relation holds for a variety of systems, including disk galaxy mergers, spherical collapses, cold dark matter (CDM) halos both with and without cooling. We argue that the shape of the relation is reasonable from fundamental principles when the dark matter or stars are assumed to obey Tsallis statistics, and in that case we fit the \alpha - \beta relation with just one free parameter. One can use this result to close the Jeans equations, for example to construct mass models of elliptical galaxies from observational data or to tune dark matter direct detection experiments. We also predict the asymptotic central slope and anisotropy of CDM halos to be approximately -1 and 0.Comment: 11 pages, 2 figures. Extended discussion. Conclusions unchanged. Matches accepted versio

    A universal velocity distribution of relaxed collisionless structures

    Full text link
    Several general trends have been identified for equilibrated, self-gravitating collisionless systems, such as density or anisotropy profiles. These are integrated quantities which naturally depend on the underlying velocity distribution function (VDF) of the system. We study this VDF through a set of numerical simulations, which allow us to extract both the radial and the tangential VDF. We find that the shape of the VDF is universal, in the sense that it depends only on two things namely the dispersion (radial or tangential) and the local slope of the density. Both the radial and the tangential VDF's are universal for a collection of simulations, including controlled collisions with very different initial conditions, radial infall simulation, and structures formed in cosmological simulations.Comment: 13 pages, 6 figures; oversimplified analysis corrected; changed abstract and conclusions; significantly extended discussio

    What it takes to measure a fundamental difference between dark matter and baryons: the halo velocity anisotropy

    Full text link
    Numerous ongoing experiments aim at detecting WIMP dark matter particles from the galactic halo directly through WIMP-nucleon interactions. Once such a detection is established a confirmation of the galactic origin of the signal is needed. This requires a direction-sensitive detector. We show that such a detector can measure the velocity anisotropy beta of the galactic halo. Cosmological N-body simulations predict the dark matter anisotropy to be nonzero, beta~0.2. Baryonic matter has beta=0 and therefore a detection of a nonzero beta would be strong proof of the fundamental difference between dark and baryonic matter. We estimate the sensitivity for various detector configurations using Monte Carlo methods and we show that the strongest signal is found in the relatively few high recoil energy events. Measuring beta to the precision of ~0.03 will require detecting more than 10^4 WIMP events with nuclear recoil energies greater than 100 keV for a WIMP mass of 100 GeV and a 32S target. This number corresponds to ~10^6 events at all energies. We discuss variations with respect to input parameters and we show that our method is robust to the presence of backgrounds and discuss the possible improved sensitivity for an energy-sensitive detector.Comment: 15 pages, 8 figures, accepted by JCAP. Matches accepted versio

    Measurement of the dark matter velocity anisotropy in galaxy clusters

    Get PDF
    The internal dynamics of a dark matter structure may have the remarkable property that the local temperature in the structure depends on direction. This is parametrized by the velocity anisotropy beta which must be zero for relaxed collisional structures, but has been shown to be non-zero in numerical simulations of dark matter structures. Here we present a method to infer the radial profile of the velocity anisotropy of the dark matter halo in a galaxy cluster from X-ray observables of the intracluster gas. This non-parametric method is based on a universal relation between the dark matter temperature and the gas temperature which is confirmed through numerical simulations. We apply this method to observational data and we find that beta is significantly different from zero at intermediate radii. Thus we find a strong indication that dark matter is effectively collisionless on the dynamical time-scale of clusters, which implies an upper limit on the self-interaction cross-section per unit mass sigma/m < 1 cm2/g. Our results may provide an independent way to determine the stellar mass density in the central regions of a relaxed cluster, as well as a test of whether a cluster is in fact relaxed.Comment: 10 pages, 8 figures, submitted to Ap

    Might we eventually understand the origin of the dark matter velocity anisotropy?

    Full text link
    The density profile of simulated dark matter structures is fairly well-established, and several explanations for its characteristics have been put forward. In contrast, the radial variation of the velocity anisotropy has still not been explained. We suggest a very simple origin, based on the shapes of the velocity distributions functions, which are shown to differ between the radial and tangential directions. This allows us to derive a radial variation of the anisotropy profile which is in good agreement with both simulations and observations. One of the consequences of this suggestion is that the velocity anisotropy is entirely determined once the density profile is known. We demonstrate how this explains the origin of the \gamma-\beta relation, which is the connection between the slope of the density profile and the velocity anisotropy. These findings provide us with a powerful tool, which allows us to close the Jeans equations.Comment: 10 pages, 7 figures, subm to ap

    Nurses' knowledge and practices in cases of acute and chronic confusion: a questionnaire survey

    Get PDF
    PURPOSE: This study aimed to describe nurses' knowledge and practices toward patients with acute or chronic confusion. DESIGN AND METHODS: A cross-sectional design was used, and 249 nurses engaged in clinical practice fulfilled an online self-report questionnaire. FINDINGS: Tools for diagnosing acute confusion/delirium are never used by 57.80% of the nurses. Between 80% and 81% of nursing interventions involve managing patients' physical environment and between 62% and 71% deal with managing communication. Theoretical training in the use of tools for assessing and intervening in cases of confusion was significantly associated with nurses' knowledge and practices. PRACTICE IMPLICATIONS: These results suggest the need for increased investment in nurses' training

    Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice

    Get PDF
    Insulin resistance and impaired glucose homoeostasis are important indicators of Type 2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1−/− mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1−/− mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes

    The velocity anisotropy - density slope relation

    Full text link
    One can solve the Jeans equation analytically for equilibrated dark matter structures, once given two pieces of input from numerical simulations. These inputs are 1) a connection between phase-space density and radius, and 2) a connection between velocity anisotropy and density slope, the \alpha-\beta relation. The first (phase-space density v.s. radius) has already been analysed through several different simulations, however the second (\alpha-\beta relation) has not been quantified yet. We perform a large set of numerical experiments in order to quantify the slope and zero-point of the \alpha-\beta relation. We find strong indication that the relation is indeed an attractor. When combined with the assumption of phase-space being a power-law in radius, this allows us to conclude that equilibrated dark matter structures indeed have zero central velocity anisotropy \beta_0 = 0, central density slope of \alpha_0 = -0.8, and outer anisotropy of \beta_\infty = 0.5.Comment: 15 pages, 7 figure
    corecore