250 research outputs found

    Confronting Standard Models of Proto--Planetary Disks With New Mid--Infrared Sizes from the Keck Interferometer

    Get PDF
    We present near and mid-infrared interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the IRTF of 11 well known young stellar objects, several observed for the first time in these spectral and spatial resolution regimes. With AU-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and mid-infrared disk emission. We find a high degree of correlation between the stellar luminosity and the mid-infrared disk sizes after using near-infrared data to remove the contribution from the inner rim. We then use a semi-analytical physical model to also find that the very widely used "star + inner dust rim + flared disk" class of models strongly fails to reproduce the SED and spatially-resolved mid-infrared data simultaneously; specifically a more compact source of mid-infrared emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the two-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modelling alone, although detailed silicate feature fitting by McClure et al. 2013 recently came to a similar conclusion. As has been suggested recently by Menu et al. 2015, the difficulty in predicting mid-infrared sizes from the SED alone might hint at "transition disk"-like gaps in the inner AU; however, the relatively high correlation found in our mid-infrared disk size vs. stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead

    Desarrollo e implementación del curso de introducción a la física en la universidad autónoma de la ciudad de México (UACM)

    Get PDF
    El trabajo que ahora presentamos da cuenta del proceso de implementación del curso de Introducción a la Física que se imparte en la UACM basado en el trabajo del Physics Education Group de la Universidad de Washington. Éste se desarrolla desde un enfoque constructivista, con la intención de desarrollar conocimiento operativo y habilidades de pensamiento científico como elementos que pensamos pueden contrarrestar el fracaso usual en los cursos de física. Los resultados que se presentan en esta ponencia buscan dar evidencia de que la efectividad en el aprendizaje de la ciencia requiere del involucramiento mental activo y de la consideración del estado inicial real del estudiante, entre otras cosas; asimismo, se presenta un marco metodológico para implementar y evaluar actividades de aprendizaje bajo las mismas premisas

    Estimating the phase in ground-based interferometry: performance comparison between single-mode and multimode schemes

    Full text link
    In this paper we compare the performance of multi and single-mode interferometry for the estimation of the phase of the complex visibility. We provide a theoretical description of the interferometric signal which enables to derive the phase error in presence of detector, photon and atmospheric noises, for both multi and single-mode cases. We show that, despite the loss of flux occurring when injecting the light in the single-mode component (i.e. single-mode fibers, integrated optics), the spatial filtering properties of such single-mode devices often enable higher performance than multimode concepts. In the high flux regime speckle noise dominated, single-mode interferometry is always more efficient, and its performance is significantly better when the correction provided by adaptive optics becomes poor, by a factor of 2 and more when the Strehl ratio is lower than 10%. In low light level cases (detector noise regime), multimode interferometry reaches better performance, yet the gain never exceeds 20%, which corresponds to the percentage of photon loss due to the injection in the guides. Besides, we demonstrate that single-mode interferometry is also more robust to the turbulence in both cases of fringe tracking and phase referencing, at the exception of narrow field of views (<1 arcsec).Comment: 9 pages (+ 11 online material appendices) -- 8 Figures. Accepted in A&

    Mucolipidosis II: correlation between radiological features and histopathology of the bones.

    Get PDF
    Twelve cases of Mucolipidosis II (I-cell disease) with a wide range of severity of skeletal involvement were studied. Pathological findings in two cases provided helpful information in understanding the radiographic features of dysostosis multiplex. Inhibition of the growth plate cartilage calcification and rickets-like lesions were observed in the metaphyses. Enhanced subperiosteal remodelling and paratrabecular fibrosis were also evident in the diaphyses. High levels of parathormone were found in one case. This finding supports the hypothesis that bone lesions may be secondary, at least in part, to damage in such viscera as the kidney and/or the liver and that they are mediated by vitamin D and parathormone

    Fundamental properties of the Population II fiducial stars HD 122563 and Gmb 1830 from CHARA interferometric observations

    Get PDF
    We have determined the angular diameters of two metal-poor stars, HD 122563 and Gmb 1830, using CHARA and Palomar Testbed Interferometer observations. For the giant star HD 122563, we derive an angular diameter theta_3D = 0.940 +- 0.011 milliarcseconds (mas) using limb-darkening from 3D convection simulations and for the dwarf star Gmb 1830 (HD 103095) we obtain a 1D limb-darkened angular diameter theta_1D = 0.679 +- 0.007 mas. Coupling the angular diameters with photometry yields effective temperatures with precisions better than 55 K (Teff = 4598 +- 41 K and 4818 +- 54 K --- for the giant and the dwarf star, respectively). Including their distances results in very well-determined luminosities and radii (L = 230 +- 6 L_sun, R = 23.9 +- 1.9 R_sun and L = 0.213 +- 0.002 L_sun, R = 0.664 +- 0.015 R_sun, respectively). We used the CESAM2k stellar structure and evolution code in order to produce models that fit the observational data. We found values of the mixing-length parameter alpha (which describes 1D convection) that depend on the mass of the star. The masses were determined from the models with precisions of <3% and with the well-measured radii excellent constraints on the surface gravity are obtained (log g = 1.60 +- 0.04, 4.59 +- 0.02, respectively). The very small errors on both log g and Teff provide stringent constraints for spectroscopic analyses given the sensitivity of abundances to both of these values. The precise determination of Teff for the two stars brings into question the photometric scales for metal-poor stars.Comment: accepted A&A, 8 dbl-column pages, incl. 7 tables and 4 figure

    Confronting standard models of proto-planetary disks with new mid-infrared sizes from the Keck Interferometer

    Get PDF
    This is the author accepted manuscript. The final version is available from American Astronomical Society/IOP Publishing via the DOI in this record.The published version is in ORE at http://hdl.handle.net/10871/30943We present near and mid–infrared interferometric observations made with the Keck Interferometer Nuller and near–contemporaneous spectro–photometry from the IRTF of 11 well known young stellar objects, several observed for the first time in these spectral and spatial resolution regimes. With AU–level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and mid–infrared disk emission. We find a high degree of correlation between the stellar luminosity and the mid–infrared disk sizes after using near–infrared data to remove the contribution from the inner rim. We then use a semi–analytical physical model to also find that the very widely used “star + inner dust rim+ flared disk” class of models strongly fails to reproduce the SED and spatially–resolved mid–infrared data simultaneously; specifically a more compact source of mid–infrared emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the two–rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modelling alone, although detailed silicate feature fitting by McClure et al. (2013) recently came to a similar conclusion. As has been suggested recently by Menu et al. (2015), the difficulty in predicting mid–infrared sizes from the SED alone might hint at “transition disk”–like gaps in the inner AU; however, the relatively high correlation found in our mid–infrared disk size vs. stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.The authors wish to acknowledge fruitful discussions with Nuria Calvet and Melissa McClure. Part of this work was performed while X. C. was a Visiting Graduate Student Research Fellow at the Infrared Processing and Analysis Center (IPAC), California Institute of Technology. The Keck Interferometer was funded by the National Aeronautics and Space Administration as part of its Exoplanet Exploration Program. Data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. Data presented in this paper were obtained at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract NNH14CK55B with the National Aeronautics and Space Administration. We gratefully acknowledge support and participation in the IRTF/BASS observing runs by Daryl Kim, The Aerospace Corporation. This work has made use of services produced by the NASA Exoplanet Science Institute at the California Institute of Technology. M. S. was supported by NASA ADAP grant NNX09AC73G. R. W. R. was supported by the IR&D program of The Aerospace Corporatio

    Imaging the asymmetric dust shell around CI Cam with long baseline optical interferometry

    Get PDF
    We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed Interferometer (PTI). Visibilities and closure phases were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was observed in the near-infrared H and K spectral bands, wavelengths well suited to measure the size and study the geometry of the hot dust surrounding CI Cam. The analysis of the visibility data over an 8 year period from soon after the 1998 outburst to 2006 shows that the dust visibility has not changed over the years. The visibility data shows that CI Cam is elongated which confirms the disc-shape of the circumstellar environment and totally rules out the hypothesis of a spherical dust shell. Closure phase measurements show direct evidence of asymmetries in the circumstellar environment of CI Cam and we conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at an angle. The near-infrared dust emission appears as an elliptical skewed Gaussian ring with a major axis a = 7.58 +/- 0.24 mas, an axis ratio r = 0.39 +/- 0.03 and a position angle theta = 35 +/- 2 deg.Comment: 9 pages, 5 figures, accepted MNRA

    The near-infrared size-luminosity relations for Herbig Ae/Be disks

    Full text link
    We report the results of a sensitive K-band survey of Herbig Ae/Be disk sizes using the 85-m baseline Keck Interferometer. Targets were chosen to span the maximum range of stellar properties to probe the disk size dependence on luminosity and effective temperature. For most targets, the measured near-infrared sizes (ranging from 0.2 to 4 AU) support a simple disk model possessing a central optically-thin (dust-free) cavity, ringed by hot dust emitting at the expected sublimation temperatures (T_sub~1000-1500K). Furthermore, we find a tight correlation of disk size with source luminosity R propto L^(1/2) for Ae and late Be systems (valid over more than 2 decades in luminosity), confirming earlier suggestions based on lower-quality data. Interestingly, the inferred dust-free inner cavities of the highest luminosity sources (Herbig B0-B3 stars) are under-sized compared to predictions of the optically-thin cavity model, likely due to optically-thick gas within the inner AU.Comment: Accepted by Astrophysical Journal; 24 pages, 4 figures, 4 table

    Constraining the Exozodiacal Luminosity Function of Main-sequence Stars: Complete Results from the Keck Nuller Mid-infrared Surveys

    Get PDF
    Forty-seven nearby main-sequence stars were surveyed with the Keck Interferometer mid-infrared Nulling instrument (KIN) between 2008 and 2011, searching for faint resolved emission from exozodiacal dust. Observations of a subset of the sample have already been reported, focusing essentially on stars with no previously known dust. Here we extend this previous analysis to the whole KIN sample, including 22 more stars with known near-and/or far-infrared excesses. In addition to an analysis similar to that of the first paper of this series, which was restricted to the 8-9 µm spectral region, we present measurements obtained in all 10 spectral channels covering the 8-13 µm instrumental bandwidth. Based on the 8-9 µm data alone, which provide the highest signal-to-noise measurements, only one star shows a large excess imputable to dust emission (η Crv), while four more show a significant (> 3σ) excess: β Leo, β UMa, ζ Lep, and y Oph. Overall, excesses detected by KIN are more frequent around A-type stars than later spectral types. Astatistical analysis of the measurements further indicates that stars with known far-infrared (y ≥ 70 µm) excesses have higher exozodiacal emission levels than stars with no previous indication of a cold outer disk. This statistical trend is observed regardless of spectral type and points to a dynamical connection between the inner (zodi-like) and outer (Kuiper-Belt-like) dust populations. The measured levels for such stars are clustering close to the KIN detection limit of a few hundred zodis and are indeed consistent with those expected from a population of dust that migrated in from the outer belt by Poynting-Robertson drag. Conversely, no significant mid-ilinfrared excess is found around sources with previously reported near-infrared resolved excesses, which typically have levels of the order of 1% over the photospheric flux. If dust emission is really at play in these near-infrared detections, the absence of a strong mid-infrared counterpart points to populations of very hot and small (submicron) grains piling up very close to the sublimation radius. For solar-type stars with no known infrared excess, likely to be the most relevant targets for a future exo-Earth direct imaging mission, we find that their median zodi level is 12±24 zodis and lower than 60 (90) zodis with 95% (99%) confidence, if a lognormal zodi luminosity distribution is assumed

    Detection of Viral RNA in Tissues following Plasma Clearance from an Ebola Virus Infected Patient

    Get PDF
    An unprecedented Ebola virus (EBOV) epidemic occurred in 2013–2016 in West Africa. Over this time the epidemic exponentially grew and moved to Europe and North America, with several imported cases and many Health Care Workers (HCW) infected. Better understanding of EBOV infection patterns in different body compartments is mandatory to develop new countermeasures, as well as to fully comprehend the pathways of human-to-human transmission. We have longitudinally explored the persistence of EBOV-specific negative sense genomic RNA (neg-RNA) and the presence of positive sense RNA (pos-RNA), including both replication intermediate (antigenomic-RNA) and messenger RNA (mRNA) molecules, in the upper and lower respiratory tract, as compared to plasma, in a HCW infected with EBOV in Sierra Leone, who was hospitalized in the high isolation facility of the National Institute for Infectious Diseases “Lazzaro Spallanzani” (INMI), Rome, Italy. We observed persistence of pos-RNA and neg-RNAs in longitudinally collected specimens of the lower respiratory tract, even after viral clearance from plasma, suggesting possible local replication. The purpose of the present study is to enhance the knowledge on the biological features of EBOV that can contribute to the human-to-human transmissibility and to develop effective intervention strategies. However, further investigation is needed in order to better understand the clinical meaning of viral replication and shedding in the respiratory tract
    corecore