80 research outputs found

    Interactions between the hippocampus and prefrontal cortex in context-dependent overlapping memory retrieval

    Get PDF
    Activation in the hippocampus (HC) and prefrontal cortex (PFC) is critical to accurately retrieve overlapping sequences. Experiments 1 and 2 tested the hypotheses that activation in and interaction between HC and PFC increases as overlap between sequences increases in a non-spatial task. Experiment 3 tested the hypothesis that theta oscillations are involved in orchestrating interactions between HC and PFC in a spatial task with overlapping elements. In the first two studies, 17 participants (aged 18-34; 11 female) learned sequences consisting of a picture frame, face, and scene. Conditions varied by degree of overlap. Using fMRI, Experiment 1 tested how degree of overlap affected HC and PFC activation. In overlapping sequences, middle and posterior HC were active when predictability of the correct response increased, dorsolateral PFC was active when participants were able to ascertain the correct set of sequences, and ventrolateral PFC was active when inhibition of interfering associations was required. Experiment 2 examined functional connectivity of HC and PFC during disambiguation. Low- and high-overlap conditions were associated with increased connectivity in separate regions at different times indicating that retrieval under the two conditions used different neural networks and strategies. Low-overlap trials were associated with increased connectivity between HC and prefrontal and parietal regions. High-overlap trials showed increased connectivity between lateral PFC and visual areas, indicating that imagery may be necessary for accurate performance. Using EEG recording, Experiment 3 examined theta activity during retrieval of well-learned, overlapping and non-overlapping mazes in 17 participants (aged 18-34, 11 female). Theta activity increased in overlapping mazes during the first of four hallways, suggesting participants were looking ahead to upcoming turns in the maze. Theta activity increased at the beginning and choice point of the third overlapping hallway, possibly in response to interference from the paired, overlapping maze. These studies provide evidence that (1) overlapping associations in non-spatial sequences elicit interactions between hippocampus and lateral prefrontal cortex, (2) increasing the degree of overlap changes the neural processes required to perform the task, and (3) theta power increases in response to increased cognitive demand and maintenance of sequence information needed to differentiate between overlapping spatial routes

    Predictability matters: role of the hippocampus and prefrontal cortex in disambiguation of overlapping sequences

    Get PDF
    Previous research has demonstrated that areas in the medial temporal lobe and prefrontal cortex (PFC) show increased activation during retrieval of overlapping sequences. In this study, we designed a task in which degree of overlap varied between conditions in order to parse out the contributions of hippocampal and prefrontal subregions as overlap between associations increased. In the task, participants learned sequential associations consisting of a picture frame, a face within the picture frame, and an outdoor scene. The control condition consisted of a single frame-face-scene sequence. In the low overlap condition, each frame was paired with two faces and two scenes. In the high overlap condition, each frame was paired with four faces and four scenes. In all conditions the correct scene was chosen among four possible scenes and was dependent on the frame and face that preceded the choice point. One day after training, participants were tested on the retrieval of learned sequences during fMRI scanning. Results showed that the middle and posterior hippocampus (HC) was active at times when participants acquired information that increased predictability of the correct response in the overlapping sequences. Activation of dorsolateral PFC occurred at time points when the participant was able to ascertain which set of sequences the correct response belonged to. The ventrolateral PFC was active when inhibition was required, either of irrelevant stimuli or incorrect responses. These results indicate that areas of lateral PFC work in concert with the HC to disambiguate between overlapping sequences and that sequence predictability is key to when specific brain regions become active

    DEDD regulates degradation of intermediate filaments during apoptosis

    Get PDF
    Apoptosis depends critically on regulated cytoskeletal reorganization events in a cell. We demonstrate that death effector domain containing DNA binding protein (DEDD), a highly conserved and ubiquitous death effector domain containing protein, exists predominantly as mono- or diubiquitinated, and that diubiquitinated DEDD interacts with both the K8/18 intermediate filament network and pro–caspase-3. Early in apoptosis, both cytosolic DEDD and its close homologue DEDD2 formed filaments that colocalized with and depended on K8/18 and active caspase-3. Subsequently, these filamentous structures collapsed into intracellular inclusions that migrated into cytoplasmic blebs and contained DEDD, DEDD2, active caspase-3, and caspase-3–cleaved K18 late in apoptosis. Biochemical studies further confirmed that DEDD coimmunoprecipitated with both K18 and pro–caspase-3, and kinetic analyses placed apoptotic DEDD staining prior to caspase-3 activation and K18 cleavage. In addition, both caspase-3 activation and K18 cleavage was inhibited by expression of DEDDΔNLS1-3, a cytosolic form of DEDD that cannot be ubiquitinated. Finally, siRNA mediated DEDD knockdown cells exhibited inhibition of staurosporine-induced DNA degradation. Our data suggest that DEDD represents a novel scaffold protein that directs the effector caspase-3 to certain substrates facilitating their ordered degradation during apoptosis

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Preventive evidence into practice (PEP) study: implementation of guidelines to prevent primary vascular disease in general practice protocol for a cluster randomised controlled trial

    Get PDF
    There are significant gaps in the implementation and uptake of evidence-based guideline recommendations for cardiovascular disease (CVD) and diabetes in Australian general practice. This study protocol describes the methodology for a cluster randomised trial to evaluate the effectiveness of a model that aims to improve the implementation of these guidelines in Australian general practice developed by a collaboration between researchers, non-government organisations, and the profession.This study is funded by an Australian National Health and Medical Research Council (NHMRC) Partnership grant (ID 568978) together with the Australian National Heart Foundation, Royal Australian College of General Practitioners, and the BUPA Foundation. MH is supported by a NHMRC Senior Principle Research Fellowship

    Quantifying HIV transmission flow between high-prevalence hotspots and surrounding communities: a population-based study in Rakai, Uganda

    Get PDF
    Background International and global organisations advocate targeting interventions to areas of high HIV prevalence (ie, hotspots). To better understand the potential benefits of geo-targeted control, we assessed the extent to which HIV hotspots along Lake Victoria sustain transmission in neighbouring populations in south-central Uganda. Methods We did a population-based survey in Rakai, Uganda, using data from the Rakai Community Cohort Study. The study surveyed all individuals aged 15–49 years in four high-prevalence Lake Victoria fishing communities and 36 neighbouring inland communities. Viral RNA was deep sequenced from participants infected with HIV who were antiretroviral therapy-naive during the observation period. Phylogenetic analysis was used to infer partial HIV transmission networks, including direction of transmission. Reconstructed networks were interpreted through data for current residence and migration history. HIV transmission flows within and between high-prevalence and low-prevalence areas were quantified adjusting for incomplete sampling of the population. Findings Between Aug 10, 2011, and Jan 30, 2015, data were collected for the Rakai Community Cohort Study. 25 882 individuals participated, including an estimated 75·7% of the lakeside population and 16·2% of the inland population in the Rakai region of Uganda. 5142 participants were HIV-positive (2703 [13·7%] in inland and 2439 [40·1%] in fishing communities). 3878 (75·4%) people who were HIV-positive did not report antiretroviral therapy use, of whom 2652 (68·4%) had virus deep-sequenced at sufficient quality for phylogenetic analysis. 446 transmission networks were reconstructed, including 293 linked pairs with inferred direction of transmission. Adjusting for incomplete sampling, an estimated 5·7% (95% credibility interval 4·4–7·3) of transmissions occurred within lakeside areas, 89·2% (86·0–91·8) within inland areas, 1·3% (0·6–2·6) from lakeside to inland areas, and 3·7% (2·3–5·8) from inland to lakeside areas. Interpretation Cross-community HIV transmissions between Lake Victoria hotspots and surrounding inland populations are infrequent and when they occur, virus more commonly flows into rather than out of hotspots. This result suggests that targeted interventions to these hotspots will not alone control the epidemic in inland populations, where most transmissions occur. Thus, geographical targeting of high prevalence areas might not be effective for broader epidemic control depending on underlying epidemic dynamics. Funding The Bill & Melinda Gates Foundation, the National Institute of Allergy and Infectious Diseases, the National Institute of Mental Health, the National Institute of Child Health and Development, the Division of Intramural Research of the National Institute for Allergy and Infectious Diseases, the World Bank, the Doris Duke Charitable Foundation, the Johns Hopkins University Center for AIDS Research, and the President's Emergency Plan for AIDS Relief through the Centers for Disease Control and Prevention

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore