710 research outputs found
Lowland river responses to intraplate tectonism and climate forcing quantified with luminescence and cosmogenic 10Be
Intraplate tectonism has produced large-scale folding that steers regional drainage systems, such as the 1600 km-long Cooper Ck, en route to Australiaâs continental depocentre at Lake Eyre. We apply cosmogenic 10Be exposure dating in bedrock, and luminescence dating in sediment, to quantify the erosional and depositional response of Cooper Ck where it incises the rising Innamincka Dome. The detachment of bedrock joint-blocks during extreme floods governs the minimum rate of incision (17.4±6.5 mm/ky) estimated using a numerical model of episodic erosion calibrated with our 10Be measurements. The last big-flood phase occurred no earlier than ~112â121ka. Upstream of the Innamincka Dome long-term rates of alluvial deposition, partly reflecting synclinal-basin subsidence, are estimated from 47 luminescence dates in sediments accumulated since ~270 ka. Sequestration of sediment in subsiding basins such as these may account for the lack of Quaternary accumulation in Lake Eyre, and moreover suggests that notions of a single primary depocentre at base-level may poorly represent lowland, arid-zone rivers. Over the period ~75â55 ka Cooper Ck changed from a bedload- dominant, laterally-active meandering river to a muddy anabranching channel network up to 60 km wide. We propose that this shift in river pattern was a product of base-level rise linked with the slowly deforming synclineâanticline structure, coupled with a climate-forced reduction in discharge. The uniform valley slope along this subsiding alluvial and rising bedrock system represents an adjustment between the relative rates of deformation and the ability of greatly enhanced flows at times during the Quaternary to incise the rising anticline. Hence, tectonic and climate controls are balanced in the long term
Experience-Dependent Modulation of C. elegans Behavior by Ambient Oxygen
SummaryBackground: Ambient oxygen (O2) influences the behavior of organisms from bacteria to man. In C. elegans, an atypical O2 binding soluble guanylate cyclase (sGC), GCY-35, regulates O2 responses. However, how acute and chronic changes in O2 modify behavior is poorly understood.Results: Aggregating C. elegans strains can respond to a reduction in ambient O2 by a rapid, reversible, and graded inhibition of roaming behavior. This aerokinetic response is mediated by GCY-35 and GCY-36 sGCs, which appear to become activated as O2 levels drop and to depolarize the AQR, PQR, and URX neurons. Coexpression of GCY-35 and GCY-36 is sufficient to transform olfactory neurons into O2 sensors. Natural variation at the npr-1 neuropeptide receptor alters both food-sensing and O2-sensing circuits to reconfigure the salient features of the C. elegans environment. When cultivated in 1% O2 for a few hours, C. elegans reset their preferred ambient O2, seeking instead of avoiding 0%â5% O2. This plasticity involves reprogramming the AQR, PQR, and URX neurons.Conclusions: To navigate O2 gradients, C. elegans can modulate turning rates and speed of movement. Aerotaxis can be reprogrammed by experience or engineered artificially. We propose a model in which prolonged activation of the AQR, PQR, and URX neurons by low O2 switches on previously inactive O2 sensors. This enables aerotaxis to low O2 environments and may encode a âmemoryâ of previous cultivation in low O2
Phase transitions in BaTiO from first principles
We develop a first-principles scheme to study ferroelectric phase transitions
for perovskite compounds. We obtain an effective Hamiltonian which is fully
specified by first-principles ultra-soft pseudopotential calculations. This
approach is applied to BaTiO, and the resulting Hamiltonian is studied
using Monte Carlo simulations. The calculated phase sequence, transition
temperatures, latent heats, and spontaneous polarizations are all in good
agreement with experiment. The order-disorder vs.\ displacive character of the
transitions and the roles played by different interactions are discussed.Comment: 13 page
Absence of a True Vortex-Glass Phase above the Bragg Glass Transition Line in Bi-2212
In magnetic measurements on BiSrCaCuO (Bi-2212)
single crystals, a general peak with a dynamical feature on both and
curves was found with S the magnetic relaxation rate. At higher fields,
the characteristic exponent becomes negative, together with the positive
curvature of vs. and the scaling based on the 2D vortex glass
theory or plastic creep theory, we conclude that the vortex motion above the
second peak is plastic when and there is no vortex glass phase at
finite temperatures in Bi-2212. The peak of S is then explained as the
crossover between different meta-stable vortex states.Comment: 10 pages, 5 figures, To appear in Physica
Real Time Turbulent Video Perfecting by Image Stabilization and Super-Resolution
Image and video quality in Long Range Observation Systems (LOROS) suffer from
atmospheric turbulence that causes small neighbourhoods in image frames to
chaotically move in different directions and substantially hampers visual
analysis of such image and video sequences. The paper presents a real-time
algorithm for perfecting turbulence degraded videos by means of stabilization
and resolution enhancement. The latter is achieved by exploiting the turbulent
motion. The algorithm involves generation of a reference frame and estimation,
for each incoming video frame, of a local image displacement map with respect
to the reference frame; segmentation of the displacement map into two classes:
stationary and moving objects and resolution enhancement of stationary objects,
while preserving real motion. Experiments with synthetic and real-life
sequences have shown that the enhanced videos, generated in real time, exhibit
substantially better resolution and complete stabilization for stationary
objects while retaining real motion.Comment: Submitted to The Seventh IASTED International Conference on
Visualization, Imaging, and Image Processing (VIIP 2007) August, 2007 Palma
de Mallorca, Spai
The High Energy Telescope for STEREO
The IMPACT investigation for the STEREO Mission includes a complement of Solar Energetic Particle instruments on each of the two STEREO spacecraft. Of these instruments, the High Energy Telescopes (HETs) provide the highest energy measurements. This paper describes the HETs in detail, including the scientific objectives, the sensors, the overall mechanical and electrical design, and the on-board software. The HETs are designed to measure the abundances and energy spectra of electrons, protons, He, and heavier nuclei up to Fe in interplanetary space. For protons and He that stop in the HET, the kinetic energy range corresponds to âŒ13 to 40 MeV/n. Protons that do not stop in the telescope (referred to as penetrating protons) are measured up to âŒ100 MeV/n, as are penetrating He. For stopping He, the individual isotopes 3He and 4He can be distinguished. Stopping electrons are measured in the energy range âŒ0.7â6 MeV
The Self Model and the Conception of Biological Identity in Immunology
The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity
Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis
The plant hormone gibberellin (GA) regulates multiple developmental processes. It accumulates in the root elongating endodermis, but how it moves into this cell file and the significance of this accumulation are unclear. Here we identify three NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) transporters required for GA and abscisic acid (ABA) translocation. We demonstrate that NPF2.14 is a subcellular GA/ABA transporter, presumably the first to be identified in plants, facilitating GA and ABA accumulation in the root endodermis to regulate suberization. Further, NPF2.12 and NPF2.13, closely related proteins, are plasma membrane-localized GA and ABA importers that facilitate shoot-to-root GA translocation, regulating endodermal hormone accumulation. This work reveals that GA is required for root suberization and that GA and ABA can act non-antagonistically. We demonstrate how the clade of transporters mediates hormone flow with cell-file-specific vacuolar storage at the phloem unloading zone, and slow release of hormone to induce suberin formation in the maturation zone
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
- âŠ