229 research outputs found

    A 195.6dBc/Hz peak FoM P-N class-B oscillator with transformer-based tail filtering

    Get PDF
    A complementary p-n class-B oscillator with two magnetically coupled second harmonic tail resonators is presented. For the same oscillation amplitude (constrained by reliability considerations) and the same tank, the p-n oscillator achieves 3-4dB better Figure of Merit (FoM) than an n-only reference one. After frequency division by 2, the p-n oscillator has a measured phase noise that ranges from -150.8 to -151.5 dBc/Hz at 10MHz offset from the carrier when the frequency of oscillation is varied from 3.64 to 4.15GHz. With a power consumption of 6.3mW, a peak FoM of 195.6 dBc/Hz is achieved.This work was supported by the European Marie Curie Grant Agreement No 251399. Paulo Mendes research was partially supported by grant SFRH/BSAB/1245/2012.info:eu-repo/semantics/publishedVersio

    Analysis and design of a 195.6 dBc/Hz peak FoM P-N class-B oscillator with transformer-based tail filtering

    Get PDF
    A complementary p-n class-B oscillator with two magnetically coupled second harmonic tail resonators is presented and compared to an N-only reference one. An in depth analysis of phase noise, based on direct derivation of the Impulse Sensitivity Function (ISF), provides design insights on the optimization of the tail resonators. In principle the complementary p-n oscillator has the same optimum Figure of Merit (FoM) of the N-only at half the voltage swing. At a supply voltage of 1.5 V, the maximum allowed oscillation amplitude of the N-only is constrained, by reliability considerations, to be smaller than the value that corresponds to the optimum FoM even when 1.8 V thick oxide transistors are used. For an oscillation amplitude that ensures reliable operation and the same tank, the p-n oscillator achieves a FoM 2 to 3 dB better than the N, only depending on the safety margin taken in the design. After frequency division by 2, the p-n oscillator has a measured phase noise that ranges from -150.8 to -151.5 dBc/Hz at 10 MHz offset from the carrier when the frequency of oscillation is varied from 7.35 to 8.4 GHz. With a power consumption of 6.3 mW, a peak FoM of 195.6 dBc/Hz is achieved.This work was supported by the European Marie Curie IAPP Grant Agreement N 251399.info:eu-repo/semantics/publishedVersio

    Ibrutinib Unmasks Critical Role of Bruton Tyrosine Kinase in Primary CNS Lymphoma.

    Get PDF
    Bruton tyrosine kinase (BTK) links the B-cell antigen receptor (BCR) and Toll-like receptors with NF-κB. The role of BTK in primary central nervous system (CNS) lymphoma (PCNSL) is unknown. We performed a phase I clinical trial with ibrutinib, the first-in-class BTK inhibitor, for patients with relapsed or refractory CNS lymphoma. Clinical responses to ibrutinib occurred in 10 of 13 (77%) patients with PCNSL, including five complete responses. The only PCNSL with complete ibrutinib resistance harbored a mutation within the coiled-coil domain of CARD11, a known ibrutinib resistance mechanism. Incomplete tumor responses were associated with mutations in the B-cell antigen receptor-associated protein CD79B

    Protein Kinase C: Targets to Regenerate Brain Injuries?

    Get PDF
    Acute or chronic injury to the central nervous system (CNS), causes neuronal death and irreversible cognitive deficits or sensory-motor alteration. Despite the capacity of the adult CNS to generate new neurons from neural stem cells (NSC), neuronal replacement following an injury is a restricted process, which does not naturally result in functional regeneration. Therefore, potentiating endogenous neurogenesis is one of the strategies that are currently being under study to regenerate damaged brain tissue. The insignificant neurogenesis that occurs in CNS injuries is a consequence of the gliogenic/non-neurogenic environment that inflammatory signaling molecules create within the injured area. The modification of the extracellular signals to generate a neurogenic environment would facilitate neuronal replacement. However, in order to generate this environment, it is necessary to unearth which molecules promote or impair neurogenesis to introduce the first and/or eliminate the latter. Specific isozymes of the protein kinase C (PKC) family differentially contribute to generate a gliogenic or neurogenic environment in injuries by regulating the ADAM17 mediated release of growth factor receptor ligands. Recent reports describe several non-tumorigenic diterpenes isolated from plants of the Euphorbia genus, which specifically modulate the activity of PKC isozymes promoting neurogenesis. Diterpenes with 12-deoxyphorbol or lathyrane skeleton, increase NPC proliferation in neurogenic niches in the adult mouse brain in a PKCb dependent manner exerting their effects on transit amplifying cells, whereas PKC inhibition in injuries promotes neurogenesis. Thus, compounds that balance PKC activity in injuries might be of use in the development of new drugs and therapeutic strategies to regenerate brain injuries

    EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer

    Get PDF
    Transport of macromolecules through the nuclear pore by importins and exportins plays a critical role in the spatial regulation of protein activity. How cancer cells co-opt this process to promote tumorigenesis remains unclear. The epidermal growth factor receptor (EGFR) plays a critical role in normal development and in human cancer. Here we describe a mechanism of EGFR regulation through the importin β family member RAN-binding protein 6 (RanBP6), a protein of hitherto unknown functions. We show that RanBP6 silencing impairs nuclear translocation of signal transducer and activator of transcription 3 (STAT3), reduces STAT3 binding to the EGFR promoter, results in transcriptional derepression of EGFR, and increased EGFR pathway output. Focal deletions of the RanBP6 locus on chromosome 9p were found in a subset of glioblastoma (GBM) and silencing of RanBP6 promoted glioma growth in vivo. Our results provide an example of EGFR deregulation in cancer through silencing of components of the nuclear import pathway.This research was supported by the National Brain Tumor Society (I.K.M.), the National Institutes of Health grants 1R01NS080944-01 (I.K.M.), 1 R35 NS105109 01 (I.K.M.), and P30CA008748 (MSKCC Core Grant), the Geoffrey Beene Cancer Research Foundation (I.K.M.), the Cycle of Survival (I.K.M.), and the Seve Ballesteros Foundation (M.S.). B.O. was supported by an American–Italian Cancer Foundation fellowship and a MSKCC Brain Tumor Center grant. W.-Y.H. is the recipient of a FY15 Horizon Award from the U.S. Department of Defense (W81XWH-15-PRCRP-HA). A.C.-G. is the recipient of the Severo-Ochoa PhD fellowship. Further support was provided by the Sontag Foundation (B.S.T.). We thank all members of the Mellinghoff laboratory for helpful suggestions. We thank Dr. Fiona Ginty (Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA) for assistance with multiplexed immunofluorescence. We thank A.J. Schuhmacher and C.S. Clemente-Troncone for assistance with the in vivo experiments, M. Kaufmann for assistance in the luciferase assays and N. Yannuzzi for assistance in cloning.S

    LRIG1 is a gatekeeper to exit from quiescence in adult neural stem cells

    Get PDF
    Adult neural stem cells (NSCs) must tightly regulate quiescence and proliferation. Single-cell analysis has suggested a continuum of cell states as NSCs exit quiescence. Here we capture and characterize in vitro primed quiescent NSCs and identify LRIG1 as an important regulator. We show that BMP-4 signaling induces a dormant non-cycling quiescent state (d-qNSCs), whereas combined BMP-4/FGF-2 signaling induces a distinct primed quiescent state poised for cell cycle re-entry. Primed quiescent NSCs (p-qNSCs) are defined by high levels of LRIG1 and CD9, as well as an interferon response signature, and can efficiently engraft into the adult subventricular zone (SVZ) niche. Genetic disruption of Lrig1 in vivo within the SVZ NSCs leads an enhanced proliferation. Mechanistically, LRIG1 primes quiescent NSCs for cell cycle re-entry and EGFR responsiveness by enabling EGFR protein levels to increase but limiting signaling activation. LRIG1 is therefore an important functional regulator of NSC exit from quiescence

    A Component of Retinal Light Adaptation Mediated by the Thyroid Hormone Cascade

    Get PDF
    Analysis with DNA-microrrays and real time PCR show that several genes involved in the thyroid hormone cascade, such as deiodinase 2 and 3 (Dio2 and Dio3) are differentially regulated by the circadian clock and by changes of the ambient light. The expression level of Dio2 in adult rats (2–3 months of age) kept continuously in darkness is modulated by the circadian clock and is up-regulated by 2 fold at midday. When the diurnal ambient light was on, the expression level of Dio2 increased by 4–8 fold and a consequent increase of the related protein was detected around the nuclei of retinal photoreceptors and of neurons in inner and outer nuclear layers. The expression level of Dio3 had a different temporal pattern and was down-regulated by diurnal light. Our results suggest that DIO2 and DIO3 have a role not only in the developing retina but also in the adult retina and are powerfully regulated by light. As the thyroid hormone is a ligand-inducible transcription factor controlling the expression of several target genes, the transcriptional activation of Dio2 could be a novel genomic component of light adaptation

    Identifying niche mediated regulatory factors of stem cell phenotypic state: a systems biology approach

    Get PDF
    Understanding how the cellular niche controls the stem cell phenotype is often hampered due to the complexity of variegated niche composition, its dynamics, and nonlinear stem cell–niche interactions. Here, we propose a systems biology view that considers stem cell–niche interactions as a many‐body problem amenable to simplification by the concept of mean field approximation. This enables approximation of the niche effect on stem cells as a constant field that induces sustained activation/inhibition of specific stem cell signaling pathways in all stem cells within heterogeneous populations exhibiting the same phenotype (niche determinants). This view offers a new basis for the development of single cell‐based computational approaches for identifying niche determinants, which has potential applications in regenerative medicine and tissue engineering

    Control of adult neurogenesis by programmed cell death in the mammalian brain

    Full text link
    corecore