59 research outputs found

    Muscle function and hydrodynamics limit power and speed in swimming frogs

    Get PDF
    Studies of the muscle force-velocity relationship and its derived n-shaped power-velocity curve offer important insights into muscular limits of performance. Given the power is maximal at 1/3 V max, geometric scaling of muscle force coupled with fluid drag force implies that this optimal muscle-shortening velocity for power cannot be maintained across the natural body-size range. Instead, muscle velocity may decrease with increasing body size, conferring a similar n-shaped power curve with body size. Here we examine swimming speed and muscle function in the aquatic frog Xenopus laevis. Swimming speed shows an n-shaped scaling relationship, peaking at 47.35 g. Further, in vitro muscle function of the ankle extensor plantaris longus also shows an optimal body mass for muscle power output (47.27 g), reflecting that of swimming speed. These findings suggest that in drag-based aquatic systems, muscle-environment interactions vary with body size, limiting both the muscle's potential to produce power and the swimming speed

    Optimal body size with respect to maximal speed for the yellow-spotted monitor lizard (Varanus panoptes; varanidae)

    Get PDF
    Studies of locomotor performance often link variation in morphology with ecology. While maximum sprint speed is a commonly used performance variable, the absolute limits for this performance trait are not completely understood. Absolute maximal speed has often been shown to increase linearly with body size, but several comparative studies covering a large range of body sizes suggest that maximal speed does not increase indefinitely with body mass but rather reaches an optimum after which speed declines. Because of the comparative nature of these studies, it is difficult to determine whether this decrease is due to biomechanical constraints on maximal speed or is a consequence of phylogenetic inertia or perhaps relaxed selection for lower maximal speed at large body size. To explore this issue, we have examined intraspecific variations in morphology, maximal sprint speed, and kinematics for the yellowspotted monitor lizard Varanus panoptes, which varied in body mass from 0.09 to 5.75 kg. We show a curvilinear relationship between body size and absolute maximal sprint speed with an optimal body mass with respect to speed of 1.245 kg. This excludes the phylogenetic inertia hypothesis, because this effect should be absent intraspecifically, while supporting the biomechanical constraints hypothesis. The relaxed selection hypothesis cannot be excluded if there is a size-based behavioral shift intraspecifically, but the biomechanical constraints hypothesis is better supported from kinematic analyses. Kinematic measurements of hind limb movement suggest that the distance moved by the body during the stance phase may limit maximum speed. This limit is thought to be imposed by a decreased ability of the bones and muscles to support body mass for larger lizards

    Foot pressure distributions during walking in African elephants (Loxodonta africana)

    Get PDF
    Elephants, the largest living land mammals, have evolved a specialized foot morphology to help reduce locomotor pressures while supporting their large body mass. Peak pressures that could cause tissue damage are mitigated passively by the anatomy of elephants' feet, yet this mechanism does not seem to work well for some captive animals. This study tests how foot pressures vary among African and Asian elephants from habitats where natural substrates predominate but where foot care protocols differ. Variations in pressure patterns might be related to differences in husbandry, including but not limited to trimming and the substrates that elephants typically stand and move on. Both species' samples exhibited the highest concentration of peak pressures on the lateral digits of their feet (which tend to develop more disease in elephants) and lower pressures around the heel. The trajectories of the foot's centre of pressure were also similar, confirming that when walking at similar speeds, both species load their feet laterally at impact and then shift their weight medially throughout the step until toe-off. Overall, we found evidence of variations in foot pressure patterns that might be attributable to husbandry and other causes, deserving further examination using broader, more comparable samples

    Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing

    Get PDF
    Organismal functions are size-dependent whenever body surfaces supply body volumes. Larger organisms can develop strongly folded internal surfaces for enhanced diffusion, but in many cases areas cannot be folded so that their enlargement is constrained by anatomy, presenting a problem for larger animals. Here, we study the allometry of adhesive pad area in 225 climbing animal species, covering more than seven orders of magnitude in weight. Across all taxa, adhesive pad area showed extreme positive allometry and scaled with weight, implying a 200-fold increase of relative pad area from mites to geckos. However, allometric scaling coefficients for pad area systematically decreased with taxonomic level, and were close to isometry when evolutionary history was accounted for, indicating that the substantial anatomical changes required to achieve this increase in relative pad area are limited by phylogenetic constraints. Using a comparative phylogenetic approach, we found that the departure from isometry is almost exclusively caused by large differences in size-corrected pad area between arthropods and vertebrates. To mitigate the expected decrease of weight-specific adhesion within closely related taxa where pad area scaled close to isometry, data for several taxa suggest that the pads’ adhesive strength increased for larger animals. The combination of adjustments in relative pad area for distantly related taxa and changes in adhesive strength for closely related groups helps explain how climbing with adhesive pads has evolved in animals varying over seven orders of magnitude in body weight. Our results illustrate the size limits of adhesion-based climbing, with profound implications for large-scale bio-inspired adhesives.We are sincerely grateful to all our colleagues who readily shared published and unpublished data with us: Aaron M. Bauer, Jon Barnes, Niall Crawford, Thomas Endlein, Hanns Hagen Goetzke, Thomas E. Macrini, Anthony P. Russell & Joanna M. Smith. We also thank Casey Gilman, Dylan Briggs, Irina Showalter, Dan King and Mike Imburgia for their assistance with the collection of gecko toepad data. This study was supported by research grants from the UK Biotechnology and Biological Sciences Research Council (BB/I008667/1) to WF, the Human Frontier Science Programme (RGP0034/2012) to DI, AJC and WF, the Denman Baynes Senior Research Fellowship to DL and a Discovery Early Career Research Fellowship (DE120101503) to CJC.This is the author accepted manuscript. The final version is available from the National Academy of Sciences via http://dx.doi.org/ 10.1073/pnas.151945911

    Jumping without slipping: leafhoppers (Hemiptera: Cicadellidae) possess special tarsal structures for jumping from smooth surfaces.

    Get PDF
    Many hemipteran bugs can jump explosively from plant substrates, which can be very smooth. We therefore analysed the jumping performance of froghoppers (Philaenus spumarius, Aphrophoridae) and leafhoppers (Aphrodes bicinctus/makarovi, Cicadellidae) taking off from smooth (glass) and rough (sandpaper, 30 µm asperity size) surfaces. On glass, the propulsive hind legs of Philaenus froghoppers slipped, resulting in uncontrolled jumps with a fast forward spin, a steeper angle and only a quarter of the velocity compared with jumps from rough surfaces. By contrast, Aphrodes leafhoppers took off without their propulsive hind legs slipping, and reached low take-off angles and high velocities on both substrates. This difference in jumping ability from smooth surfaces can be explained not only by the lower acceleration of the long-legged leafhoppers, but also by the presence of 2-9 soft pad-like structures (platellae) on their hind tarsi, which are absent in froghoppers. High-speed videos of jumping showed that platellae contact the surface briefly (approx. 3 ms) during the acceleration phase. Friction force measurements on individual hind tarsi on glass revealed that at low sliding speeds, both pushing and pulling forces were small, and insufficient to explain the recorded jumps. Only when the tarsi were pushed with higher velocities did the contact area of the platellae increase markedly, and high friction forces were produced, consistent with the observed jumps. Our findings show that leafhoppers have special adhesive footpads for jumping from smooth surfaces, which achieve firm grip and rapid control of attachment/detachment by combining anisotropic friction with velocity dependence

    Surface friction alters the agility of a small Australian marsupial

    Get PDF
    Movement speed can underpin an animal's probability of success in ecological tasks. Prey often use agility to outmanoeuvre predators; however, faster speeds increase inertia and reduce agility. Agility is also constrained by grip, as the foot must have sufficient friction with the ground to apply the forces required for turning. Consequently, ground surface should affect optimum turning speed. We tested the speed-agility trade-off in buff-footed antechinus () on two different surfaces. Antechinus used slower turning speeds over smaller turning radii on both surfaces, as predicted by the speed-agility trade-off. Slipping was 64% more likely on the low-friction surface, and had a higher probability of occurring the faster the antechinus were running before the turn. However, antechinus compensated for differences in surface friction by using slower pre-turn speeds as their amount of experience on the low-friction surface increased, which consequently reduced their probability of slipping. Conversely, on the high-friction surface, antechinus used faster pre-turn speeds in later trials, which had no effect on their probability of slipping. Overall, antechinus used larger turning radii (0.733±0.062 versus 0.576±0.051 m) and slower pre-turn (1.595±0.058 versus 2.174±0.050 m s) and turning speeds (1.649±0.061 versus 2.01±0.054 m s) on the low-friction surface. Our results demonstrate the interactive effect of surface friction and the speed-agility trade-off on speed choice. To predict wild animals' movement speeds, future studies should examine the interactions between biomechanical trade-offs and terrain, and quantify the costs of motor mistakes in different ecological activities

    The influence of claw morphology on gripping efficiency

    Get PDF
    This paper considers the effects of claw morphology on the gripping efficiency of arboreal (Varanus varius) and burrowing (Varanus gouldii and Varanus panoptes) lizards. To ensure a purely morphological comparison between the lizards, we circumvent the material effects of claws from different species, by modelling and testing claw replicates of the same material properties. We correlate climbing efficiency to critical morphological features including; claw height (hc), width (wc), length (lc), curvature () and tip angle (γ), which are expressed as ratios to normalise mechanically beneficial claw structures. We find that there is strong correlation between the static grip force Fsg and the claw aspect and the cross-sectional rigidity ratio , and milder correlation (i.e. higher scatter) with the profile rigidity ratio . These correlations are also true for the interlocking grip force Fint over different shaped and sized protuberances, though we note that certain protuberance size-shape couplings are of detriment to the repeatability of Fint. Of the three lizard species, the claws of the arboreal (V. varius) are found to be superior to those of the burrower lizards (V. gouldii and V. panoptes) as a result of the V. varius claws having a smaller aspect, a higher cross-sectional rigidity ratio and a small profile rigidity ratio, which are deemed noteworthy morphological parameters that influence a claw's ability to grip effectively

    Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms

    Get PDF
    While snake venoms have been the subject of intense study, comparatively little work has been done on lizard venoms. In this study, we have examined the structural and functional diversification of anguimorph lizard venoms and associated toxins, and related these results to dentition and predatory ecology. Venom composition was shown to be highly variable across the 20 species of Heloderma, Lanthanotus, and Varanus included in our study. While kallikrein enzymes were ubiquitous, they were also a particularly multifunctional toxin type, with differential activities on enzyme substrates and also ability to degrade alpha or beta chains of fibrinogen that reflects structural variability. Examination of other toxin types also revealed similar variability in their presence and activity levels. The high level of venom chemistry variation in varanid lizards compared to that of helodermatid lizards suggests that venom may be subject to different selection pressures in these two families. These results not only contribute to our understanding of venom evolution but also reveal anguimorph lizard venoms to be rich sources of novel bioactive molecules with potential as drug design and development lead compounds

    Data from: The evolution of bipedal running in lizards suggests a consequential origin may be exploited in later lineages.

    No full text
    The origin of bipedal locomotion in lizards is unclear. Modeling studies have suggested that bipedalism may be an exaptation, a byproduct of features originally designed to increase maneuverability, which were only later exploited. Measurement of the body center of mass (BCOM) in 124 species of lizards confirms a significant rearward shift among bipedal lineages. Further racetrack trials showed a significant acceleration threshold between bipedal and quadrupedal runs. These suggest good general support for a passive bipedal model, in which the combination of these features lead to passive lifting of the front of the body. However, variation in morphology could only account for 56% of the variation in acceleration thresholds, suggesting that dynamics have a significant influence on bipedalism. Deviation from the passive bipedal model was compared with node age, supporting an increase in the influence of dynamics over time. Together, these results show that bipedalism may have first arisen as a consequence of acceleration and a rearward shift in the BCOM, but subsequent linages have exploited this consequence to become bipedal more often, suggesting that bipedalism in lizards may convey some advantage. Exploitation of bipedalism was also associated with increased rates of phenotypic diversity, suggesting exploiting bipedalism may promote adaptive radiation
    • …
    corecore