15 research outputs found

    In vitro activity of tigecycline against clinical isolates of carbapenem resistant <it>Acinetobacter baumannii</it> complex in Pretoria, South Africa

    No full text
    Abstract Background The presence of multi-drug resistant Acinetobacter baumannii raises a big therapeutic challenge in our hospital. Tigecycline, a new glycylcycline with expanded broad spectrum of activity against multi-drug resistant organisms was recently licensed in South Africa. Aim The aim of this study was to evaluate the in vitro activity of tigecycline against carbapenem resistant A. baumannii complex. Methods Consecutive clinical isolates of carbapenem resistant A. baumannii complex were collected between February and July 2010. Species identification and susceptibility testing was performed by Vitek-2 colorimetric compact system with Advanced Expert System (AES). Strains were tested for carbapenemase production by the modified Hodge test, according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. Results A total of 232 carbapenem resistant clinical isolates of A. baumannii complex were collected over the six months study period; 217 (93.5%) of these were modified Hodge test positive. All isolates were susceptible to colistin and 174 (78%) susceptible to amikacin whilst 20 (9%) were susceptible to ciprofloxacin. For tigecycline 169 (75.8%) were fully susceptible, 37 (16.6%) intermediately resistant and only 17 (7.6%) were fully resistant. None of the carbapenem resistant isolates were susceptible to ampicillin, amoxicillin/clavullanic acid, piperacillin/tazobactam, cefuroxime, cefuroxime axetil, cefoxitin, cefepime or nitrofurantoin. Conclusion All carbapenem resistant isolates were found to be fully susceptible to colistin; amikacin and tigecycline susceptibility was 78% and 76% respectively. Treatment options for infections due to carbapenem and multi-drug resistant A. baumannii organisms are limited and hence tigecycline and amikacin may be considered. The properties of tigecycline i.e. stability, safety, low toxicity, non cross-resistance with other antibiotics and its efficacy against multi-drug resistant A. baumannii isolates make it a good choice. However, ongoing monitoring of A. baumannii susceptibility to tigecycline is needed.</p

    Directional microwave ablation in spine: experimental assessment of computational modeling

    No full text
    AbstractBackground Despite the theoretical advantages of treating metastatic bone disease with microwave ablation (MWA), there are few reports characterizing microwave absorption and bioheat transfer in bone. This report describes a computational modeling-based approach to simulate directional microwave ablation (dMWA) in spine, supported by ex vivo and pilot in vivo experiments in porcine vertebral bodies.Materials and methods A 3D computational model of microwave ablation within porcine vertebral bodies was developed. Ex vivo porcine vertebra experiments using a dMWA applicator measured temperatures approximately 10.1 mm radially from the applicator in the direction of MW radiation (T1) and approximately 2.4 mm in the contra-lateral direction (T2). Histologic assessment of ablated ex vivo tissue was conducted and experimental results compared to simulations. Pilot in vivo experiments in porcine vertebral bodies assessed ablation zones histologically and with CT and MRI.Results Experimental T1 and T2 temperatures were within 3–7% and 11–33% of simulated temperature values. Visible ablation zones, as indicated by grayed tissue, were smaller than those typical in other soft tissues. Posthumous MRI images of in vivo ablations showed hyperintensity. In vivo experiments illustrated the technical feasibility of creating directional microwave ablation zones in porcine vertebral body.Conclusion Computational models and experimental studies illustrate the feasibility of controlled dMWA in bone tissue
    corecore