1,107 research outputs found

    Chyle leakage in port incision after video-assisted thoracoscopic surgery: case report

    Get PDF
    A 26-year-old Asian male was found to have chyle leakage from the port incision after video-assisted thoracoscopic surgery (VATS) for excision of pulmonary bullae. The diagnosis was confirmed by oral intake of Sudan black and by lymphoscintigraphy. The leakage resolved after 5 days of restricted oral intake and total parenteral nutrition. No leakage recurred after return of oral intake. Possible explanations for the port incision chyle leakage are obstruction of the thoracic duct, which induced retrograde drainage of the lymphoid fluid, or an aberrant collateral branch of the thoracic duct in the chest wall

    Sea-level constraints on the amplitude and source distribution of Meltwater Pulse 1A.

    Get PDF
    During the last deglaciation, sea levels rose as ice sheets retreated. This climate transition was punctuated by periods of more intense melting; the largest and most rapid of these—Meltwater Pulse 1A—occurred about 14,500 years ago, with rates of sea-level rise reaching approximately 4 m per century1, 2, 3. Such rates of rise suggest ice-sheet instability, but the meltwater sources are poorly constrained, thus limiting our understanding of the causes and impacts of the event4, 5, 6, 7. In particular, geophysical modelling studies constrained by tropical sea-level records1, 8, 9 suggest an Antarctic contribution of more than seven metres, whereas most reconstructions10 from Antarctica indicate no substantial change in ice-sheet volume around the time of Meltwater Pulse 1A. Here we use a glacial isostatic adjustment model to reinterpret tropical sea-level reconstructions from Barbados2, the Sunda Shelf3 and Tahiti1. According to our results, global mean sea-level rise during Meltwater Pulse 1A was between 8.6 and 14.6 m (95% probability). As for the melt partitioning, we find an allowable contribution from Antarctica of either 4.1 to 10.0 m or 0 to 6.9 m (95% probability), using two recent estimates11, 12 of the contribution from the North American ice sheets. We conclude that with current geologic constraints, the method applied here is unable to support or refute the possibility of a significant Antarctic contribution to Meltwater Pulse 1A

    Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago

    Get PDF
    Past sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation. Here we show that MWP-1A started no earlier than 14,650 years ago and ended before 14,310 years ago, making it coeval with the Bolling warming. Our results, based on corals drilled offshore from Tahiti during Integrated Ocean Drilling Project Expedition 310, reveal that the increase in sea level at Tahiti was between 12 and 22 metres, with a most probable value between 14 and 18 metres, establishing a significant meltwater contribution from the Southern Hemisphere. This implies that the rate of eustatic sea-level rise exceeded 40 millimetres per year during MWP-1A

    Watching dark solitons decay into vortex rings in a Bose-Einstein condensate

    Get PDF
    We have created spatial dark solitons in two-component Bose-Einstein condensates in which the soliton exists in one of the condensate components and the soliton nodal plane is filled with the second component. The filled solitons are stable for hundreds of milliseconds. The filling can be selectively removed, making the soliton more susceptible to dynamical instabilities. For a condensate in a spherically symmetric potential, these instabilities cause the dark soliton to decay into stable vortex rings. We have imaged the resulting vortex rings.Comment: 4 pages, 4 figure

    Quantitative proteomics reveals extensive lysine ubiquitination in the Arabidopsis root proteome and uncovers novel transcription factor stability states

    Get PDF
    Protein activity, abundance, and stability can be regulated by posttranslational modification including ubiquitination. Ubiquitination is conserved among eukaryotes and plays a central role in modulating cellular function and yet we lack comprehensive catalogs of proteins that are modified by ubiquitin in plants. In this study, we describe an antibody-based approach to enrich peptides containing the di-glycine (diGly) remnant of ubiquitin and coupled that with isobaric labeling to enable quantification, from up to 16-multiplexed samples, for plant tissues. Collectively, we identified 7,130 diGly-modified lysine residues sites arising from 3,178 proteins in Arabidopsis primary roots. These data include ubiquitin proteasome dependent ubiquitination events as well as ubiquitination events associated with auxin treatment. Gene Ontology analysis indicated that ubiquitinated proteins are associated with numerous biological processes including hormone signaling, plant defense, protein homeostasis, and root morphogenesis. We determined the ubiquitinated lysine residues that directly regulate the stability of the transcription factors CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX 1 (CIB1), CIB1 LIKE PROTEIN 2 (CIL2), and SENSITIVE TO PROTON RHIZOTOXICITY (STOP1) using site directed mutagenesis and in vivo degradation assays. These comprehensive site-level ubiquitinome profiles provide a wealth of data for future studies related to modulation of biological processes mediated by this posttranslational modification in plants

    Vortex stability of interacting Bose-Einstein condensates confined in anisotropic harmonic traps

    Full text link
    Vortex states of weakly-interacting Bose-Einstein condensates confined in three-dimensional rotating harmonic traps are investigated numerically at zero temperature. The ground state in the rotating frame is obtained by propagating the Gross-Pitaevskii equation for the condensate in imaginary time. The total energies between states with and without a vortex are compared, yielding critical rotation frequencies that depend on the anisotropy of the trap and the number of atoms. Vortices displaced from the center of nonrotating traps are found to have long lifetimes for sufficiently large numbers of atoms. The relationship between vortex stability and bound core states is explored.Comment: 5 pages, 2 embedded figures, revtex. To appear in Phys. Rev. Let

    Nucleation of vortex arrays in rotating anisotropic Bose-Einstein condensates

    Full text link
    The nucleation of vortices and the resulting structures of vortex arrays in dilute, trapped, zero-temperature Bose-Einstein condensates are investigated numerically. Vortices are generated by rotating a three-dimensional, anisotropic harmonic atom trap. The condensate ground state is obtained by propagating the Gross-Pitaevskii equation in imaginary time. Vortices first appear at a rotation frequency significantly larger than the critical frequency for vortex stabilization. This is consistent with a critical velocity mechanism for vortex nucleation. At higher frequencies, the structures of the vortex arrays are strongly influenced by trap geometry.Comment: 5 pages, two embedded figures. To appear in Phys. Rev. A (RC

    A chemical understanding for the enhanced hydrogen tunnelling in hydroperoxidation of linoleic acid catalysed by soybean lipoxygenase-1

    Get PDF
    The reaction path of the Interacting-State Model (ISM) is used with the Transition-State Theory (TST) and the semiclassical correction for tunnelling (ISM/scTST) to calculate the rates of H-atom abstraction from C(11) of linoleic acid catalysed by soybean lipoxygenase-1 (SLO), as well as of an analogous uncatalysed reaction in solution. The calculated hydrogen-atom transfer rates, their temperature dependency and kinetic isotope effect (KIE) are in good agreement with the experimental data. ISM/scTST calculations reveal the hypersensitivity of the rate to protein dynamics when the hydrogen bonding to a carbon atom is present in the reaction coordinate
    corecore