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for Criterial Causation
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Abstract. Propagation of activation of neurons depends on settings of a
number of intrinsic characteristics of the network of neurons, such as synaptic
connection strengths and excitability thresholds for neurons. These settings
serve as criteria on the incoming signals for a neuron to get activated. As part of
the plasticity of the neural processing these network characteristics also change
over time. Such changes can be slow compared to propagation of activation, like
in learning from a number of experiences, but they can also be fast, like in
memory formation. From the informational perspective on the criteria, this can
be considered a form of information formation, and the firing of neurons as
driven by this information. This is called criterial causation. In this paper, an
adaptive network model is presented modeling such criterial causation. More-
over, it is shown how criterial causation in the brain relates to the more general
temporal factorisation principle for the world’s dynamics.

1 Introduction

Neural processing is much more than propagation of activation of neurons; e.g., [25].
Such propagation depends on settings for a number of intrinsic characteristics of the
network of neurons, such as synaptic connection strengths and excitability thresholds
for neurons. These settings form a configuration in the brain that serves as a set of
criteria on the incoming patterns of signals for a neuron to get activated; by Tse [25, 26]
this is called criterial causation. As put forward by Tse, the criteria can be considered a
form of information realised in the concerning brain configuration: ‘physically realised
informational criteria’, e.g., [26], p. 259; in future situations, only when these criteria
are met, the neuron will fire. As part of the neural processing, not only activation of
neurons, but also the network characteristics defining these criteria change over time.
Such changes of the network characteristics depend on the patterns in the past that
affect them. The changes can be slow compared to propagation of activation of neu-
rons, like in learning from a larger number of experiences, but they can also happen
almost instantly, like in memory formation; the latter is called rapid resetting of the
criteria by [25, 26]. From the informational perspective on the criteria, this form of
network adaptation can be considered as a form of emerging information formation,
and the firing of neurons as driven by this information [25, 26].
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This paper presents a computational adaptive network model that makes the above
more precise, and illustrates it by a simulation for an example scenario. Moreover, the
paper shows how the perspective as sketched can be considered a special case of the
more general perspective on the dynamics of the world based on temporal factorisation
by mediating state properties [17, 18]. Mediating state properties on the one hand
encode in the present world configuration, information on the past pattern in the world,
and on the other hand they determine the possible future patterns for the world from
there. This wider perspective generalises specific processes of emerging information
formation and usage taking place in the brain, to more general emerging information
formation and usage as an inherent characteristic of the world’s dynamics. Viewed in
this more general way, it may be argued that the brain’s functioning by criterial
causation is entailed by the more general principle of temporal factorisation of the
world’s dynamics, or at least makes clever use of that general principle. Then, viewed
from an informational perspective, the temporal factorisation principle can be seen as a
way in which in general the world’s dynamics creates emergent information in its
configuration, and the more specific principle of criterial causation describes particu-
larly how the brain creates emergent information in its configuration. In both cases this
emergent information determines the options for the future patterns.

2 Temporal Factorisation and Criterial Causation

The temporal factorisation principle [17, 18] states that any systematic temporal ‘past
pattern implies future pattern’ relationship a ) b between a past pattern a and a future
pattern b can be factorised in the form of two temporal relationships a ) p and
p ) b for some state property p (called mediating state property) of the present world
state; see Fig. 1, left hand side. More specifically, the principle claims that for any ‘past
pattern implies future pattern’ relationship a ) b there exists a world state property
p (describing some configuration of the present world state) such that temporal rela-
tionships ‘past pattern implies present state property’ a ) p and ‘present state property
implies future pattern’ p ) b hold: a ) b ) 9 p a ) p & p ) b. Note that the
mediating state property p does not need to be one simple state propertyy; it can (and
often will) be a combination of multiple state properties occurring at that time point.

p
a1 b1

am bn

past 
pattern 

a 

future
pattern

b 

Fig. 1. Left hand picture: Mediating state property p in the present for the past pattern implies
future pattern relation a ) b, adopted from [17], p. 60, Fig. 1. Right hand picture: Criterial
causation; adopted from [25], p. 125, Fig. 6.2.
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The temporal factorisation principle claims that the present world state configura-
tion p encodes sufficient information so that the world can forget about the temporal
pattern a in the past if it makes temporal pattern b occur in the future; therefore it
essentially is a claim that world state configurations are sufficiently rich to encode all
(future-)relevant information on the past (which in theory could concern an almost
infinite number of world states, with their temporal relations) in some condensed form
in one state configuration. In [17] it is discussed in more detail how this principle
relates to views on the world’s dynamics from Descartes [8], Laplace [13], Ashby [2]
and van Gelder and Port [27]. Descartes [8] puts forward that systematic relationships
(laws of nature) exist for world states over time, in the sense that past world states
imply future world states (called the clockwork universe). Laplace [13] claims: ‘We
may regard the present state of the universe as the effect of its past and the cause of its
future’. In [27], following Ashby [2] the notion of state-determined system is taken as a
basis for dynamics: ‘… its current state always determines a unique future behaviour…
the future behaviour cannot depend in any way on whatever states the system might
have been in before the current state’ [27], p. 6. Note that the temporal factorisation
principle relates to these views but, in contrast, does not assume an overall deter-
ministic world. It only applies to aspects of the world that happen to be deterministic
(as expressed by the conditional a ) b). In [17, 18], the temporal factorisation prin-
ciple is modeled in a formalised manner, and by many examples it is shown how the
temporal factorisation principle plays its role in the world’s dynamics, taken from
Physics and from Cognitive Science.

One example to illustrate the principle is as follows. Suppose in reality or in a
virtual game context in the present state there is a door that was locked by someone in a
past pattern a and therefore only can be opened in a future pattern b in which you bring
the right key with you. From a ) b, the temporal factorisation principle concludes that
there is a mediating state property p that holds in the present state such that a ) p &
p ) b. Indeed this p is the state property of the door being locked; then a ) p ex-
presses that if in the past someone locked the door, it is locked now, and p ) b ex-
presses that (only) when you bring the right key with you in the future it can be opened.
The informational perspective here is that within the world the lock represents some
form of information, and only when in the future pattern b the right key (with the right
key shape, according to that lock information) occurs, the door opens. This is a clear
case illustrating the way in which the mediating state configuration encodes informa-
tion, and it is this information what drives the world to future pattern b, in which when
the key occurs, the door can be opened. In this case, humans are actors encoding the
information in the world, as the lock and the matching key are human-made: humans
informationalise the world, the world is becoming more informational due to human
intervention. A similar example of human-made informationalisation of the world is
when Little Thumb drops pebbles to find his way back. However, the temporal fac-
torisation principle claims in general that the world (as a kind of actor) is doing a
similar encoding of information concerning past patterns in present world state con-
figurations without human intervention.

Adaptive Network Modeling for Criterial Causation 829



The temporal factorisation principle can also be illustrated by the behavioural
notion of ‘delayed response behaviour’, that has a long tradition in the psychology
literature concerning animal cognition and behaviour; e.g., [7, 9, 11, 15]. Consider c is
food at location l0 visible for an animal, d is the animal gets released, and e is that the
animal gets at l0. An example of a past pattern a is: for at least two different time points
in the past, state c (food visible at l0) occurred. An example of a future pattern b is: if in
some future state d occurs (animal is released), then at some later time point state e will
occur (animal at l0). The temporal factorisation principle says: if a ) b, then there is
some state property p such that a ) p and p ) b. In this example, the (mediating)
state property p postulated by the temporal factorisation principle would refer to an
internal cognitive state, functioning as a form of memory for the animal. More
specifically, in this case, after observing in animal experiments many times that the
past-future relationship a ) b holds, the temporal factorisation principle postulates
that some kind of (memory) state is formed after a past pattern a occurred, and that this
memory state drives the organism’s future behaviour in the sense that b holds. Also in
this case, such a memory state can be considered to encode information about the
world, and this information drives the future behaviour. Here, the information for-
mation is an emerging process taking place without any human intervention, and also
for the animal probably it will not happen as an intentional process. So, the world itself
does the information formation, in this case via the brain.

Criterial Causation as Temporal Factorisation
After Sect. 1 and the above explanation, it may already have become clear that tem-
poral factorisation and criterial causation have a close relationship; even the two pic-
tures shown in Fig. 1 for temporal factorisation (left hand side) and criterial causation
(right hand side) have a high extent of similarity. The correspondence can essentially
be formulated as follows. In the above explanation the mediating state property p in the
present state for temporal factorisation corresponds to the locked door; this lock defines
the criteria for criterial causation. Fulfilment of the criteria in a future pattern b corre-
spond to the fitting of a key in the lock, after which in b the door opens. This fulfilment
corresponds to the firing of a neuron and its consequences in future pattern b.

3 Criterial Causation in Temporal-Causal Networks

In the above general formulation of the temporal factorisation principle, world states
and past and future world patterns are kept abstract. However, often a notion of
causality is considered as a way to describe the world’s dynamics. Also in Tse [25] ’s
perspective based on criterial causation, causal relations play an important role.
Therefore it makes sense to analyse how temporal factorisation and criterial causation
work in combination with a description of world dynamics by a temporal-causal net-
work [19, 21]. A temporal-causal network is characterised by connectivity character-
istics (the connections from nodes X to Y and their weights xX,Y), aggregation
characteristics (for each node Y, by a combination function cY(…) some form of
aggregation is applied to the causal impacts from the incoming connections), and

830 J. Treur



timing characteristics (nodes Y have speed factors ηY indicating how fast they change
upon causal impact). The difference equations used for simulation and mathematical
analysis incorporate these three types of network characteristics xX,Y, cY(…), ηY: for
any state Y it holds

Y tþDtð Þ ¼ Y tð Þþ gY cY xX1;YX1 tð Þ; . . .;xXk ;YXk tð Þ� �� Y tð Þ� �
Dt ð1Þ

where X1; . . .;Xk are the states from which Y gets incoming connections. These con-
cepts enable to design networks with their dynamics in a declarative manner, by
mathematically defined relations; see [19, 21] for more information on Network-
Oriented Modeling based on temporal-causal networks.

Criteria for Criterial Causation in Temporal-Causal Networks
Based on (1) the firing criterion of state Y can be expressed by putting that the
aggregated impact on Y is higher than 0.5:

cY xX1;YX1 tð Þ; . . .;xXk ;YXk tð Þ� �
[ 0:5 ð2Þ

So, this (2) is taken as the general criterion for criterial causation for a state Y in a
temporal-causal network. Often used combination functions cY ::ð Þ are the simple
logistic slogisticr;s . . .ð Þ and advanced logistic sum function alogisticr;s . . .ð Þ, both with
steepness parameter r > 0 and excitability threshold parameter s:

slogisticr;s V1; . . .;Vkð Þ ¼ 1
1þ e�r V1 þ ...þVk�sð Þ ð3Þ

alogisticr;s V1; . . .;Vkð Þ ¼ 1
1þ e�r V1 þ ...þVk�sð Þ �

1
1þ ersÞ

� �
1þ e�rsð Þ ð4Þ

Here the Vi denote the single impacts xXi;YXi tð Þ on state Y for each of the incoming
connections from states X1; . . .;Xk . For the simple logistic sum function (3), criterion
(2) is equivalent to

1
1þ e�r V1 þ ...þVk�sð Þ [ 0:5

with the Vi denoting the single impacts xXi;YXi tð Þ on state Y. By rewriting (see Box 1
left), this is equivalent to

xX1;YX1 tð Þþ � � � þxXk ;YXk tð Þ[ s ð5Þ

So, (5) is the more specific criterion for criterial causation for the simple logistic
combination function. For the advanced logistic combination the following similar but
more complicated criterion for criterial causation can be derived (see Box 1 right).
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xX1;YX1 tð Þþ � � � þxXk ;YXk tð Þ[ s� log
1

0:5
1þe�rs þ 1

1þers

� 1

 !
=r ð6Þ

Note that for these combination functions the criteria are expressed as linear
inequalities for state values X1; . . .;Xk with as coefficients expressions in terms of net-
work characteristics x, r, s. The criteria for criterial causation for other combination
functions (scaled maximum smaxk(…) andminimum smink(…), scaled sum ssumk(…),
Euclidean eucln,k(...) and scaled geometric mean sgeomeank(…)) found are in Table 1.

Box 1. Deriving criteria (5) (left) and (6) (right) for criterial causation for combination functions
slogisticr;s . . .ð Þ and alogisticr;s . . .ð Þ

Table 1. Overview of the criteria for criterial causation for different combination functions

Combination function Criterion for criterial causation

Name Formula

cY ðV1; . . .;VkÞ cY ðV1; . . .;VkÞ cY xX1 ;YX1 tð Þ; . . .;xXk ;YXk tð Þ� �
[ 0:5

slogisticr,s(V1, …, Vk) 1
1þe�r V1 þ ...þVk�sð Þ xX1 ;YX1 tð Þþ . . .þxXk ;YXk tð Þ[ s

alogisticr,s(V1, …,Vk) 1
1þe�r V1 þ ...þVk�sð Þ � 1

1þersÞ
h i

1þ e�rsð Þ xX1 ;YX1 tð Þþ . . .þxXk ;YXk tð Þ[
s�logð 1

0:5
1þe�rs þ 1

1þers
� 1Þ=r

smaxk(V1, …, Vk) max(V1, …, Vk)/k xXi ;YXi tð Þ > 0.5 k for some i

smink(V1, …, Vk) min(V1, …, Vk)/k xXi ;YXi tð Þ > 0.5 k for all i

ssumk(V1, …, Vk) V1 þ ...þVk
k

xX1 ;YX1 tð Þþ . . .þxXk ;YXk tð Þ[ 0:5k

eucln,k(V1, …, Vk)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vn
1 þ ...þVn

k
k

n
q

xn
X1 ;YX1 tð Þn þ . . .þxn

Xk ;YXk tð Þn [ 0:5nk

sgeomeank(V1, …, Vk)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1�...�Vk

k
k
q

xX1 ;YX1 tð Þ � . . . � xXk ;YXk tð Þ[ 0:5kk
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Emerging Criteria for Criterial Causation in Adaptive Temporal-Causal
Networks
Networks considered for real world domains are often adaptive, so that some or all of
the above network characteristics can change over time as well. This is the way in
which the criteria for criterial causation are set dynamically, and the information based
on the criteria is not fixed but emerges. For example, in the above criteria (2), (5), (6)
the connection weights x, excitability threshold s and steepness r can change over
time, thereby changing the criterion. Then the overall dynamics is an interaction (or co-
evolution) of two types of dynamics, one of which (dynamics of the nodes) is modeled
in a declarative mathematical manner from a Network-Oriented Modeling perspective,
and the other one (dynamics of the characteristics and the criteria they define) is usually
described in a different, nondeclarative (procedural or algorithmic) manner. This leads
to a kind of hybrid model. By using the notion of network reification, the Network-
Oriented Modeling perspective can also be used to design adaptive networks in a
declarative manner by mathematically defined relations. This works by adding the
adaptive network characteristics (in a reified form) to the (base) network as nodes at a
second level, called reification level, while the original network forms the base level. In
this way an extended, reified network is obtained, which is again a temporal-causal
network. As for any temporal-causal network model, the dynamics of such a reified
network is described in a declarative mathematical Network-Oriented manner by the
nodes and their connections, including causal interlevel connections for the impact
from one level to the other. This can iteratively be applied to obtain multiple reification
levels to model multiple orders of adaptation of a network. For more details, see [20,
23], or the forthcoming book [24].

Using a reified temporal-causal network model to describe the world’s dynamics, in
a relatively easy manner causality can be modeled for criterial causation and the
temporal factorisation principle. For example, then a mediating state configuration
p can be described by the state values of a number of nodes, which each can be at the
base level, or at any reification level. And also the past and future patterns a and b are
described as patterns of state values for a number of nodes of any level over time. In
particular, for the criteria expressed by linear inequalities (5) and (6), the coefficients
are based on reification states at the reification level, whereas the states X1; . . .;Xk to
which the criteria are applied are at the base level.

4 An Example Reified Network for Criterial Causation

As discussed in Sect. 3, a temporal-causal network model involves three main char-
acteristics connectivity, aggregation, and timing of the network structure, modeled by
xX,Y, cY(…), ηY. The difference equations used for simulation and mathematical
analysis incorporate these three types of network characteristics as expressed in (1)
above. For the sake of practicality, for each application from a library basic combi-
nation functions bcfi(…), i = 1, …, m can be selected according to weights ci,Y, so that
the combination function used for any state Y is the weighted average
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cY . . .ð Þ ¼ c1;Ybcf1 . . .ð Þþ . . .þ cm;Ybcfm . . .ð Þ� �
= c1;Y þ . . .þ cm;Y
� �

Moreover, parameters of these combination functions can be considered, so that
bcfi(…) = bcfi(p, v) with p a list of parameters and v a list of values. For reified
network models additional reification states are introduced in the network that
explicitly represent characteristics of the network such as connectivity, aggregation,
and timing, and makes them adaptive; these reification states are indicated by WX,Y, Ci,

Y, Pi,,j,Y, and HY:

• Adaptive connection weight xX,Y: reified connection weight representations WX,Y

• Adaptive combination function weight ci,Y for cY(…): reified combination
function weight representations Ci,Y (for the ith combination function used)

• Adaptive combination function parameter pY for cY(…): reified combination
function parameter representations Pi,,j,Y (the jth parameter of the ith combination
function for Y)

• Adaptive speed factor ηY: reified speed factor representations HY

Example Scenario
The considered scenario is as follows. A person who is new in an organisation has to
recognize a colleague from seeing his face, modeled by stimulus s. There are two
options, colleagues a1 and a2. Deciding for one of them is represented by preparation
states psai . A belief bs1 suggests that it should be collegue a1, and a belief bs2 that it
should be colleague a2; however, these beliefs are indicative (for example, based on the
location at which the person is seen), but not sufficient to firmly decide for one of the
two. The beliefs and s are generated from independent circumstantial environmental
factors; for the model they just happen. Two types of adaptive network characteristics
are involved: the weights of the connections from the sensory state srss for s to psa1 and
psa2 , and the excitability thresholds for states psa1 and psa2 . During the scenario these
characteristics are adapted so that a decision results. The obtained settings define the
criteria for criterial causation of the recognition. Based on them, in future situations any
encounter with s (also at unexpected locations, such as a supermarket or during holi-
days) leads to fulfilment of the criteria and as a consequence to recognition.

In a graphical representation the reification states are depicted in a 3D format in a
second plane, above the (pink) plane for the base network; see the blue plane in the
example reified network model depicted in Fig. 2, also indicated as reification level;
see Table 2 for an explanation of the states. Three types of causal connections are
distinguished: upward causal connections, downward causal connections and leveled
(horizontal) causal connections. The downward causal connections have their own
fixed role and meaning in the sense that as their special effect they are causally
effectuating one of the four types of adaptive values listed above. In the reified network
model for criterial causation described here, for almost all states logistic function
alogisticr;s . . .ð Þ is used; see (4) above. As an exception, for Hebbian learning [10] the
following combination function is used for the reification states WX,Y at the reification
level:
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hebbl V1;V2;Wð Þ ¼ V1V2 1�Wð Þþ lW ð7Þ

where V1;V2 indicate the single impacts from the connected states (base states in the
bottom plane in Fig. 1) and W the connection weight (represented by reification state
WX,Y in the upper plane in Fig. 1), and l is a persistence parameter. In Fig. 1 only the
following reification states are used:

• WX,Y plays the role of connection weight for the connection from X to Y [10]
• TY plays the role of combination function parameter value for the excitability

threshold parameter s for state Y [5]

The roles of the different base and reification states are specified by role matrices
mb (base connection role), mcw (connection weight role), ms (speed factor role),
mcfw (combination function weight role), and mcfp (combination function parameter
role); e.g., [22–24]. In these role matrices (see Box 2) at each row for the given state it
is specified which other states have impact on it (incoming arrows in Fig. 2).

This is distinguished according to their role: base or non-base connections, from
which for the latter a distinction is made for the roles connection weight, speed factor,
combination function weight and combination function parameter reification. The
matrices all have rows according to the numbered states X1, X2, X3, …. For a given
application a limited sequence of combination functions is specified bymcf = [….], for
the example this is mcf = [2 3 35], where the numbers 2, 3 refer to the numbering in
the function library, the first three being eucln;k . . .ð Þ, alogisticr;s . . .ð Þ, hebbl . . .ð Þ. In
Box 2 the role matrices for the reified network model for criterial causation are shown.

psa1
sss srss

psa2

Wsrss,psa2

Wsrss,psa1 Tpsa1

Tpsa2

level
reification  

level
base 

bs1

bs2

Fig. 2. Overview of the example reified network model for criterial causation, with: (1) base
level for face recognition (lower plane, pink), (2) reification level (upper plane, blue) for the
criteria represented by the weights x of the base connections from srss to psa1 and psa2 (reified by
the two W states) and the excitability thresholds s of these two base states psa1 and psa2 (reified
by the two T states)
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The first role matrixmb for base connectivity specifies on each row for a given state
from which states at the same or a lower level it has incoming connections. For
example, in the fifth row it is indicated that state X5 (= psa1) has two incoming base
connections, from state X2 (= srss), and from state X3 (= bs1). As another example, the
7th row indicates that state X7 (= Wsrss;psa1 ) has incoming base connections from X2

(= srss), X5 (= psa1 ) and from X7 itself, and in that order, which is important as the
Hebbian combination function hebbl . . .ð Þ used here is not symmetric in its arguments.

In a similar way the four types of role matrices for non-base connectivity (i.e.,
connectivity from reification states at a higher level of reification: the downward arrows
in Fig. 2), were defined: role matrices mcw for connection weights and ms for speed
factors, and role matrices mcfw for combination function weights and mcfp for
combination function parameters (see Box 2).

Within each of the role matrices mcw, mcfw, mcfp and ms a difference is made
between cell entries indicating (in red) a reference to the name of another state that as a
form of reification represents in a dynamic manner an adaptive characteristic, and
entries indicating (in green) fixed values for nonadaptive characteristics. Indeed, in
Box 1 it can be seen that the red cells of the non-base role matrices are filled with the
(reification) states X7 to X10 of the first reification level. For example, in Box 1 the
name X7 in the red cell row-column (5, 1) in role matrix mcw indicates that the value of
the connection weight from srss to psa1 (as indicated in role matrix mb) can be found as
value of the seventh state X7. In contrast, the 1 in green cell (7, 1) of mcw indicates the
static value of the connection weight from X2 (= srss) to X7 (= Wsrss;psa1 ).

As yet another example, in role matrix mcfp for the combination function
parameters, in cell (5, 2) it is indicated that the value of the excitability threshold of
psa1 is represented by reification state X9 (= Tpsa1

). For more explanation about this role

matrix specification format, see [22, 23], or the forthcoming book [24].

Table 2. Overview of the states in the example reified network model

state
nr          name explanation

X1 sss Sensor state for external stimulus s (seeing a face)
X2 srss Sensory representation state for stimulus s
X3 bs1 Belief state 1 (belief that it is Person 1) 
X4 bs2 Belief state 2 (belief that it is Person 2)
X5 psa1 Preparation state for recognition as Person 1
X6 psa2 Preparation state for recognition as Person 2
X7 Wsrss,psa1

Reification state for the weight of the connection from srss to psa1

X8 Wsrss,psa2
Reification state for the weight of the connection from srss to psa2

X9 Tpsa1
Reification state for the excitability threshold of psa1

X10 Tpsa2
Reification state for the excitability threshold of psa2
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5 Example Simulation of Criterial Causation

Using a dedicated modeling environment [22] for reified network models, simulations
have been performed. In Fig. 3 simulation results are shown for the example Scenario
described in Sect. 4. Here the settings shown in Box 2 were used. Like in the temporal
factorisation principle, for the overall process a past pattern a, a future pattern b, and a
mediating (present) state property p, are distinguished, each of which will be briefly
discussed.

mb base 
connectivity 1 2 3

X1 sss X1
X2 srss X1
X3 bs1 X3

X4 bs2 X4

X5 psa1 X 2 X3

X6 psa2 X 2 X4

X7 Wsrss,psa1 X 2 X 5 X 7

X8 Wsrss,psa2 X 2 X 6 X 8

X9 Tpsa1 X 2 X 5 X 9

X10 Tpsa2 X 2 X 6 X 10

mcfw combination
function weights

1
alo-

gistic

2

hebb

3
step-
mod

X1 sss 1
X2 srss 1
X3 bs1 1
X4 bs2 1
X5 psa1 1
X6 psa2 1
X7 Wsrss,psa1 1
X8 Wsrss,psa2 1
X9 Tpsa1 1
X10 Tpsa2 1

ms speed 1
X1 sss 2
X2 srss 0.5
X3 bs1 2
X4 bs2 2
X5 psa1 0.2
X6 psa2 0.5
X7 Wsrss,psa1 0.3
X8 Wsrss,psa2 0.3
X9 Tpsa1 0.07
X10 Tpsa2 0.07

mcw connection 
weights 1 2 3

X1 sss 1
X2 srss 1
X3 bs1 1
X4 bs2 1
X5 psa1 X 7 0.5
X6 psa2 X 8 0.5
X7 Wsrss,psa1 1 1 1
X8 Wsrss,psa2 1 1 1
X9 Tpsa1 -0.2 -0.2 1
X10 Tpsa2 -0.2 -0.2 1

function
mcfp

parameter

1 2 3
alogistic hebb stepmod
1 2 1 2 1 2

rep init
X1 sss 50 25
X2 srss 5 0.8
X3 bs1 70 60
X4 bs2 50 25
X5 psa1 5 X 9

X6 psa2 5 X 10

X7 Wsrss,psa1 0.95
X8 Wsrss,psa2 0.95
X9 Tpsa1 5 0.4
X10 Tpsa2 5 0.4

initial values

X1 sss 0
X2 srss 0
X3 bs1 0
X4 bs2 0
X5 psa1 0
X6 psa2 0
X7 Wsrss,psa1 0.3
X8 Wsrss,psa2 0.3
X9 Tpsa1 0.8
X10 Tpsa2 0.8

Box 2. Specification in role matrices format for the reified example network for criterial
causation
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Past Pattern a (From Time Point 0 to 100)
During the past pattern a, the stimulus s (the observed face) occurs twice: from time 25 to
50 and from time 75 to 100. In these time periods also belief state bs2 occurs. The upper
and middle graph in Fig. 3 display the past pattern a and show how the recognition of
stimulus s as Person 2 is emerging: during the first encounter, psa2 (the red line) increases
relatively slowly, and during the second encounter this happens faster; apparently
already a more adequate informational criterion has been set for the recognition.

In the middle graph, the emergence of the characteristics for this criterion are
shown. In particular, it is shown that (due to belief state bs2) the reified adaptive
connection weight Wsrss;psa1 from srss to psa2 (purple line) becomes stronger, and the
reified excitability threshold Tpsa2

of psa2 (pink line) becomes lower. Note that between
time 60 and 70 for a short period belief state bs1 occurs, but this disturbance has no
substantial consequences.
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Fig. 3. A past pattern displayed in the upper graph and middle graph, and a future pattern
displayed in the lower graph, where the criterion set as a mediating (present) state by the past
pattern drives the future pattern.
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Criterion Set in the Mediating State Property p at Time Point 100
The mediating state property p describes criterion (6) for criterial causation. In this
example scenario, the mediating state property consists of the values of the following
relevant characteristics: the reified weights Wsrss;psa1 and Wsrss;psa1 of the connections
from srss to psa1 and psa2, and the reified excitability thresholds Tpsa1

and Tpsa2
for psa1

and psa1 , so the reification states X7 to X10. Note that all of them are at the reification
level. At time point 100 they have the following values: X7 = 0.136275, X8 = 0.93172,
X9 = 0.78281, X10 = 0.17232. So, this configuration described at the reification level,
defines the mediating state property, and, equivalently, the coefficients of criterion (6)
for criterial causation. It can be seen that the connection weight from srss to psa1 is low
(0.136275) and the excitability threshold for psa1 is high (0.78281). Therefore, for the
choice for Person 1 the criterion for firing cannot be met in a reasonable way. For psa1 it
is the opposite: the connection weight from srss to psa2 is high (0.93171758) and the
excitability threshold for psa2 is low (0.17232). This means that the criterion for this
choice for Person 2 is easy to fulfill by the causal impact coming from srss. Indeed,
using (6) from Sect. 3 substituted by the values of theW states and T states (reifying x
and s, respectively) at time point 100, and the value 5 of r, and 0.5 for the x from the
belief state, the criterion for firing becomes

0:5 bs2ðtÞþ 0:93172 srssðtÞ[ 0:0857

Not assuming any positive value of bs2(t), this is already fulfilled if

srssðtÞ[ 0:0857=0:93172 ¼ 0:092

So already a very weak sensory representation signal of the observed face as low as
0.1 would be enough to recognize the face.

Future Pattern b (From Time Point 100 to 200)
In the lower graph in Fig. 3 the future pattern is displayed; it is shown how based on
the emerged criterion (represented by the present mediating state at time 100), indeed
instant recognition takes place in the absense of any of the belief states. Here the
criterion is based on the (constant) values for the reified connection weights and
excitability thresholds defining the mediating state property: the values X7 = 0.136275,
X8 = 0.93172, X9 = 0.78281, X10 = 0.17232. In the future pattern at times 125 and 175
the person is seen again (sss whereby the belief state bs2 is kept 0), and the criterion
becomes fulfilled so that indeed firm recognition psa2 as Person 2 takes place.

6 Discussion

Criterial causation as introduced by Tse [25] describes how as a form of plasticity, in
the brain, configurations emerge that provide informational criteria for future pro-
cessing and behaviour. In the current paper, first it was shown how this notion relates to
the more general notion of temporal factorisation based on mediating state properties to
describe the world’s dynamics as introduced in [17]. The core of both of these two
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notions is that by some adaptive process, over time a (past) brain or world pattern leads
to the formation of a present brain or world configuration that in turn drives the (future)
brain or world pattern. From an informational perspective, this configuration in the
present encodes emergent information based on the past that is relevant for the future.
Choices made in the future are based on this information, by a person, or by the world.
In this paper it has been shown how these processes can be modeled by an adaptive
temporal-causal network.

For future work, it will be explored how the notion of Extended Mind [3, 6, 16] can
be addressed in a similar manner and how a notion of representational content [4, 12]
known from Philosophy of Mind can be used to describe the information in the
emerging brain or world configurations. Moreover, it will be explored how also
metaplasticity [1, 23] can be incorporated in the adaptive processes for criterial
causation.

On purpose, in the current paper any link to notions such as the free will problem or
the mental causation problem from Philosophy of Mind (as discussed extensively by
Tse) has been left aside. The criterial causation perspective of Tse [25] has much value
independent of such links (as also Levy [14] emphasizes), and that value has been the
focus here. However, in future work, such philosophical links might be considered as
well.
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