161 research outputs found

    Single-stage PFC ac-dc converters

    Get PDF
    For single-phase applications, two stagepower factor correction (PFC) rectifiers are typicalapproach used to achieve high power factor and fastoutput regulation. In low power area this method is tocostly. It is possible to construct a converter containinga single transistor which accomplish above mentionedfunctions. This paper highlights topological and designrequirements of single-stage high quality rectifiers.Experimental waveforms confirm the imposed mode ofoperation

    BCL11B is a general transcriptional repressor of the HIV-1 long terminal repeat in T lymphocytes through recruitment of the NuRD complex

    Get PDF
    AbstractIn this study we provide evidence that the transcription factor BCL11B represses expression from the HIV-1 long terminal repeat (LTR) in T lymphocytes through direct association with the HIV-1 LTR. We also demonstrate that the NuRD corepressor complex mediates BCL11B transcriptional repression of the HIV-1 LTR. In addition, BCL11B and the NuRD complex repressed TAT-mediated transactivation of the HIV-1 LTR in T lymphocytes, pointing to a potential role in initiation of silencing. In support of all the above results, we demonstrate that BCL11B affects HIV-1 replication and virus production, most likely by blocking LTR transcriptional activity. BCL11B showed specific repression for the HIV-1 LTR sequences isolated from seven different HIV-1 subtypes, demonstrating that it is a general transcriptional repressor for all LTRs

    Antigen-specific clonal expansion and cytolytic effector function of CD8+ T lymphocytes depend on the transcription factor Bcl11b

    Get PDF
    CD8+ T lymphocytes mediate the immune response to viruses, intracellular bacteria, protozoan parasites, and tumors. We provide evidence that the transcription factor Bcl11b/Ctip2 controls hallmark features of CD8+ T cell immunity, specifically antigen (Ag)-dependent clonal expansion and cytolytic activity. The reduced clonal expansion in the absence of Bcl11b was caused by altered proliferation during the expansion phase, with survival remaining unaffected. Two genes with critical roles in TCR signaling were deregulated in Bcl11b-deficient CD8+ T cells, CD8 coreceptor and Plcγ1, both of which may contribute to the impaired responsiveness. Bcl11b was found to bind the E8I, E8IV, and E8V, but not E8II or E8III, enhancers. Thus, Bcl11b is one of the transcription factors implicated in the maintenance of optimal CD8 coreceptor expression in peripheral CD8+ T cells through association with specific enhancers. Short-lived Klrg1hiCD127lo effector CD8+ T cells were formed during the course of infection in the absence of Bcl11b, albeit in smaller numbers, and their Ag-specific cytolytic activity on a per-cell basis was altered, which was associated with reduced granzyme B and perforin

    Increased Expression of Bcl11b Leads to Chemoresistance Accompanied by G1 Accumulation

    Get PDF
    BACKGROUND: The expression of BCL11B was reported in T-cells, neurons and keratinocytes. Aberrations of BCL11B locus leading to abnormal gene transcription were identified in human hematological disorders and corresponding animal models. Recently, the elevated levels of Bcl11b protein have been described in a subset of squameous cell carcinoma cases. Despite the rapidly accumulating knowledge concerning Bcl11b biology, the contribution of this protein to normal or transformed cell homeostasis remains open. METHODOLOGY/PRINCIPAL FINDINGS: Here, by employing an overexpression strategy we revealed formerly unidentified features of Bcl11b. Two different T-cell lines were forced to express BCL11B at levels similar to those observed in primary T-cell leukemias. This resulted in markedly increased resistance to radiomimetic drugs while no influence on death-receptor apoptotic pathway was observed. Apoptosis resistance triggered by BCL11B overexpression was accompanied by a cell cycle delay caused by accumulation of cells at G1. This cell cycle restriction was associated with upregulation of CDKN1C (p57) and CDKN2C (p18) cyclin dependent kinase inhibitors. Moreover, p27 and p130 proteins accumulated and the SKP2 gene encoding a protein of the ubiquitin-binding complex responsible for their degradation was repressed. Furthermore, the expression of the MYCN oncogene was silenced which resulted in significant depletion of the protein in cells expressing high BCL11B levels. Both cell cycle restriction and resistance to DNA-damage-induced apoptosis coincided and required the histone deacetylase binding N-terminal domain of Bcl11b. The sensitivity to genotoxic stress could be restored by the histone deacetylase inhibitor trichostatine A. CONCLUSIONS: The data presented here suggest a potential role of BCL11B in tumor survival and encourage developing Bcl11b-inhibitory approaches as a potential tool to specifically target chemoresistant tumor cells

    A signature motif mediating selective interactions of BCL11A with the NR2E/F subfamily of orphan nuclear receptors

    Get PDF
    Despite their physiological importance, selective interactions between nuclear receptors (NRs) and their cofactors are poorly understood. Here, we describe a novel signature motif (F/YSXXLXXL/Y) in the developmental regulator BCL11A that facilitates its selective interaction with members of the NR2E/F subfamily. Two copies of this motif (named here as RID1 and RID2) permit BCL11A to bind COUP-TFs (NR2F1;NR2F2;NR2F6) and Tailless/TLX (NR2E1), whereas RID1, but not RID2, binds PNR (NR2E3). We confirmed the existence of endogenous BCL11A/TLX complexes in mouse cortex tissue. No interactions of RID1 and RID2 with 20 other ligand-binding domains from different NR subtypes were observed. We show that RID1 and RID2 are required for BCL11A-mediated repression of endogenous γ-globin gene and the regulatory non-coding transcript Bgl3, and we identify COUP-TFII binding sites within the Bgl3 locus. In addition to their importance for BCL11A function, we show that F/YSXXLXXL/Y motifs are conserved in other NR cofactors. A single FSXXLXXL motif in the NR-binding SET domain protein NSD1 facilitates its interactions with the NR2E/F subfamily. However, the NSD1 motif incorporates features of both LXXLL and FSXXLXXL motifs, giving it a distinct NR-binding pattern in contrast to other cofactors. In summary, our results provide new insights into the selectivity of NR/cofactor complex formation

    Cognitive analysis of schizophrenia risk genes that function as epigenetic regulators of gene expression

    Get PDF
    Epigenetic mechanisms are an important heritable and dynamic means of regulating various genomic functions, including gene expression, to orchestrate brain development, adult neurogenesis, and synaptic plasticity. These processes when perturbed are thought to contribute to schizophrenia pathophysiology. A core feature of schizophrenia is cognitive dysfunction. For genetic disorders where cognitive impairment is more severe such as intellectual disability, there are a disproportionally high number of genes involved in the epigenetic regulation of gene transcription. Evidence now supports some shared genetic aetiology between schizophrenia and intellectual disability. GWAS have identified 108 chromosomal regions associated with schizophrenia risk that span 350 genes. This study identified genes mapping to those loci that have epigenetic functions, and tested the risk alleles defining those loci for association with cognitive deficits. We developed a list of 350 genes with epigenetic functions and cross‐referenced this with the GWAS loci. This identified eight candidate genes: BCL11B, CHD7, EP300, EPC2, GATAD2A, KDM3B, RERE, SATB2 . Using a dataset of Irish psychosis cases and controls (n = 1235), the schizophrenia risk SNPs at these loci were tested for effects on IQ, working memory, episodic memory, and attention. Strongest associations were for rs6984242 with both measures of IQ (P  = 0.001) and episodic memory (P  = 0.007). We link rs6984242 to CHD7 via a long range eQTL. These associations were not replicated in independent samples. Our study highlights that a number of genes mapping to risk loci for schizophrenia may function as epigenetic regulators of gene expression but further studies are required to establish a role for these genes in cognition

    Genome wide SNP comparative analysis between EGFR and KRAS mutated NSCLC and characterization of two models of oncogenic cooperation in non-small cell lung carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung cancer with EGFR mutation was shown to be a specific clinical entity. In order to better understand the biology behind this disease we used a genome wide characterization of loss of heterozygosity and amplification by Single Nucleotide Polymorphism (SNP) Array analysis to point out chromosome segments linked to <it>EGFR </it>mutations. To do so, we compared genetic profiles between <it>EGFR </it>mutated adenocarcinomas (ADC) and <it>KRAS </it>mutated ADC from 24 women with localized lung cancer.</p> <p>Results</p> <p>Patterns of alterations were different between <it>EGFR </it>and <it>KRAS </it>mutated tumors and specific chromosomes alterations were linked to the <it>EGFR </it>mutated group. Indeed chromosome regions 14q21.3 (p = 0.027), 7p21.3-p21.2 (p = 0.032), 7p21.3 (p = 0.042) and 7p21.2-7p15.3 (p = 0.043) were found significantly amplified in EGFR mutated tumors. Within those regions 3 genes are of special interest <it>ITGB8</it>, <it>HDAC9 </it>and <it>TWIST1</it>. Moreover, homozygous deletions at <it>CDKN2A </it>and LOH at <it>RB1 </it>were identified in <it>EGFR </it>mutated tumors. We therefore tested the existence of a link between EGFR mutation, CDKN2A homozygous deletion and cyclin amplification in a larger series of tumors. Indeed, in a series of non-small-cell lung carcinoma (n = 98) we showed that homozygous deletions at <it>CDKN2A </it>were linked to <it>EGFR </it>mutations and absence of smoking whereas cyclin amplifications (<it>CCNE1 </it>and <it>CCND1</it>) were associated to <it>TP53 </it>mutations and smoking habit.</p> <p>Conclusion</p> <p>All together, our results show that genome wide patterns of alteration differ between <it>EGFR </it>and <it>KRAS </it>mutated lung ADC, describe two models of oncogenic cooperation involving either <it>EGFR </it>mutation and <it>CDKN2A </it>deletion or cyclin amplification and <it>TP53 </it>inactivating mutations and identified new chromosome regions at 7p and 14q associated to EGFR mutations in lung cancer.</p
    corecore