20 research outputs found

    Beyond cardiovascular medicine: potential future uses of icosapent ethyl

    Get PDF
    The REDUCE-IT trial demonstrated that icosapent ethyl, an ethyl ester of eicosapentaenoic acid (EPA), reduced cardiovascular events in an at-risk population by a substantial degree. While the cardiovascular protective properties of this compound are now proven, several other potential uses are being actively explored in clinical studies. These areas of investigation include cancer, inflammatory bowel disease, infections, Alzheimer’s disease, dementia, and depression. The next decade promises to deepen our understanding of the beneficial effects that EPA may offer beyond cardiovascular risk reduction

    Developing a core outcome set for future infertility research : An international consensus development study

    Get PDF
    STUDY QUESTION: Can a core outcome set to standardize outcome selection, collection and reporting across future infertility research be developed? SUMMARY ANSWER: A minimum data set, known as a core outcome set, has been developed for randomized controlled trials (RCTs) and systematic reviews evaluating potential treatments for infertility. WHAT IS KNOWN ALREADY: Complex issues, including a failure to consider the perspectives of people with fertility problems when selecting outcomes, variations in outcome definitions and the selective reporting of outcomes on the basis of statistical analysis, make the results of infertility research difficult to interpret. STUDY DESIGN, SIZE, DURATION: A three-round Delphi survey (372 participants from 41 countries) and consensus development workshop (30 participants from 27 countries). PARTICIPANTS/MATERIALS, SETTING, METHODS: Healthcare professionals, researchers and people with fertility problems were brought together in an open and transparent process using formal consensus science methods. MAIN RESULTS AND THE ROLE OF CHANCE: The core outcome set consists of: viable intrauterine pregnancy confirmed by ultrasound (accounting for singleton, twin and higher multiple pregnancy); pregnancy loss (accounting for ectopic pregnancy, miscarriage, stillbirth and termination of pregnancy); live birth; gestational age at delivery; birthweight; neonatal mortality; and major congenital anomaly. Time to pregnancy leading to live birth should be reported when applicable. LIMITATIONS, REASONS FOR CAUTION: We used consensus development methods which have inherent limitations, including the representativeness of the participant sample, Delphi survey attrition and an arbitrary consensus threshold. WIDER IMPLICATIONS OF THE FINDINGS: Embedding the core outcome set within RCTs and systematic reviews should ensure the comprehensive selection, collection and reporting of core outcomes. Research funding bodies, the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) statement, and over 80 specialty journals, including the Cochrane Gynaecology and Fertility Group, Fertility and Sterility and Human Reproduction, have committed to implementing this core outcome set. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by the Catalyst Fund, Royal Society of New Zealand, Auckland Medical Research Fund and Maurice and Phyllis Paykel Trust. The funder had no role in the design and conduct of the study, the collection, management, analysis or interpretation of data, or manuscript preparation. B.W.J.M. is supported by a National Health and Medical Research Council Practitioner Fellowship (GNT1082548). S.B. was supported by University of Auckland Foundation Seelye Travelling Fellowship. S.B. reports being the Editor-in-Chief of Human Reproduction Open and an editor of the Cochrane Gynaecology and Fertility group. J.L.H.E. reports being the Editor Emeritus of Human Reproduction. J.M.L.K. reports research sponsorship from Ferring and Theramex. R.S.L. reports consultancy fees from Abbvie, Bayer, Ferring, Fractyl, Insud Pharma and Kindex and research sponsorship from Guerbet and Hass Avocado Board. B.W.J.M. reports consultancy fees from Guerbet, iGenomix, Merck, Merck KGaA and ObsEva. C.N. reports being the Co Editor-in-Chief of Fertility and Sterility and Section Editor of the Journal of Urology, research sponsorship from Ferring, and retains a financial interest in NexHand. A.S. reports consultancy fees from Guerbet. E.H.Y.N. reports research sponsorship from Merck. N.L.V. reports consultancy and conference fees from Ferring, Merck and Merck Sharp and Dohme. The remaining authors declare no competing interests in relation to the work presented. All authors have completed the disclosure form

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Data from: Did post-glacial sea-level changes initiate the evolutionary divergence of a Tasmanian endemic raptor from its mainland relative?

    No full text
    Populations on continental islands are often distinguishable from mainland conspecifics with respect to body size, appearance, behaviour, or life history, and this is often congruent with genetic patterns. It is commonly assumed that such differences developed following the complete isolation of populations by sea level rise following the Last Glacial Maximum (LGM). However, population divergence may pre-date the LGM, or marine dispersal and colonisation of islands may have occurred more recently; in both cases, populations may have also diverged despite on-going gene flow. Here we test these alternative hypotheses for the divergence between wedge-tailed eagles from mainland Australia (Aquila audax audax) and the threatened Tasmanian subspecies (A. a. fleayi), based on variation at 20 microsatellite loci and mtDNA. Coalescent analyses indicate that population divergence appreciably post-dates the severance of terrestrial habitat continuity, and occurred without any subsequent gene flow. We infer a recent colonisation of Tasmania by marine dispersal, and cannot discount founder effects as the cause of differences in body size and life history. We call into question the general assumption of post-LGM marine transgression as the initiator of divergence of terrestrial lineages on continental islands and adjacent mainland, and highlight the range of alternative scenarios that should be considered
    corecore