197 research outputs found

    Hypoxaemia in patients with pulmonary arterial hypertension during simulated air travel

    Get PDF
    SummaryBackgroundRecent air travel recommendations suggest patients with precapillary pulmonary hypertension (PCPH) in New York Heart Association (NYHA) functional class 3 and 4 should have in-flight oxygen without the need for pre-flight testing. However it remains unclear as to how best to determine patients fitness to fly.MethodsThis study (i) investigates the effect of hypoxic challenge testing (HCT) on the arterial oxygen levels in a cohort of 36 patients with PCPH and (ii) compares the relative frequency with which FC and HCT predict the requirement for in-flight oxygen.ResultsThe degree of arterial hypoxaemia induced by HCT (fall in partial pressure of oxygen in arterial blood (PaO2) 2.36 kPa, 95% CI 2.06–2.66 kPa) was similar to the drop observed in other published studies of chronic respiratory diseases.Following current air travel recommendations based on FC, 25 patients of the cohort would require in-flight oxygen whilst 10 subjects failed the HCT. Fourteen subjects had flown post-diagnosis. Of these, nine subjects should have had in-flight oxygen based on FC but were asymptomatic without. Also one who passed the HCT had developed symptoms during the flight whilst three who failed the HCT were asymptomatic flying without in-flight oxygen.ConclusionsHypoxaemia induced by simulated air travel in patients with PCPH is similar to that seen in published studies of patients with other chronic respiratory diseases. HCT failed to predict correctly who had developed symptoms during an aircraft flight in a significant minority of the study subjects. Similarly guidelines based on functional class result in a major increase in the proportion of patients being advised to use oxygen, many of whom had been asymptomatic on previous flights without it. More work is required to improve prediction of need for in-flight oxygen in patients with PCPH

    A Model for the Stray Light Contamination of the UVCS Instrument on SOHO

    Full text link
    We present a detailed model of stray-light suppression in the spectrometer channels of the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. The control of diffracted and scattered stray light from the bright solar disk is one of the most important tasks of a coronagraph. We compute the fractions of light that diffract past the UVCS external occulter and non-specularly pass into the spectrometer slit. The diffracted component of the stray light depends on the finite aperture of the primary mirror and on its figure. The amount of non-specular scattering depends mainly on the micro-roughness of the mirror. For reasonable choices of these quantities, the modeled stray-light fraction agrees well with measurements of stray light made both in the laboratory and during the UVCS mission. The models were constructed for the bright H I Lyman alpha emission line, but they are applicable to other spectral lines as well.Comment: 19 pages, 5 figures, Solar Physics, in pres

    Coexistence of 'alpha+ 208Pb' cluster structures and single-particle excitations in 212Po

    Full text link
    Excited states in 212Po have been populated by alpha transfer using the 208Pb(18O,14C) reaction at 85MeV beam energy and studied with the EUROBALL IV gamma multidetector array. The level scheme has been extended up to ~ 3.2 MeV excitation energy from the triple gamma coincidence data. Spin and parity values of most of the observed states have been assigned from the gamma angular distributions and gamma -gamma angular correlations. Several gamma lines with E(gamma) < 1 MeV have been found to be shifted by the Doppler effect, allowing for the measurements of the associated lifetimes by the DSAM method. The values, found in the range [0.1-0.6] ps, lead to very enhanced E1 transitions. All the emitting states, which have non-natural parity values, are discussed in terms of alpha-208Pb structure. They are in the same excitation-energy range as the states issued from shell-model configurations.Comment: 21 pages, 19 figures, corrected typos, revised arguments in Sect. III

    Jet disc coupling in black hole binaries

    Full text link
    In the last decade multi-wavelength observations have demonstrated the importance of jets in the energy output of accreting black hole binaries. The observed correlations between the presence of a jet and the state of the accretion flow provide important information on the coupling between accretion and ejection processes. After a brief review of the properties of black hole binaries, I illustrate the connection between accretion and ejection through two particularly interesting examples. First, an INTEGRAL observation of Cygnus X-1 during a 'mini-' state transition reveals disc jet coupling on time scales of orders of hours. Second, the black hole XTEJ1118+480 shows complex correlations between the X-ray and optical emission. Those correlations are interpreted in terms of coupling between disc and jet on time scales of seconds or less. Those observations are discussed in the framework of current models.Comment: Invited talk at the Fifth Stromlo Symposium: Disks, Winds & Jets - from Planets to Quasars. Accepted for publication in Astrophysics & Space Scienc

    Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield

    Get PDF
    High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe–He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by ∼ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures. [Figure not available: see fulltext.]

    The Mathematical Universe

    Full text link
    I explore physics implications of the External Reality Hypothesis (ERH) that there exists an external physical reality completely independent of us humans. I argue that with a sufficiently broad definition of mathematics, it implies the Mathematical Universe Hypothesis (MUH) that our physical world is an abstract mathematical structure. I discuss various implications of the ERH and MUH, ranging from standard physics topics like symmetries, irreducible representations, units, free parameters, randomness and initial conditions to broader issues like consciousness, parallel universes and Godel incompleteness. I hypothesize that only computable and decidable (in Godel's sense) structures exist, which alleviates the cosmological measure problem and help explain why our physical laws appear so simple. I also comment on the intimate relation between mathematical structures, computations, simulations and physical systems.Comment: Replaced to match accepted Found. Phys. version, 31 pages, 5 figs; more details at http://space.mit.edu/home/tegmark/toe.htm

    Some History of Functional Programming Languages

    Get PDF
    We study a series of milestones leading to the emergence of lazy, higher order, polymorphically typed, purely functional programming languages. An invited lecture given at TFP12, St Andrews University, 12 June 2012

    A century of sea level measurements at Newlyn, SW England

    Get PDF
    The Newlyn Tidal Observatory is the most important sea level station in the UK. It commenced operations in 1915 as part of the Second Geodetic Levelling of England and Wales, and the mean sea level determined from the tide gauge during the first six years (May 1915-April 1921) defined Ordnance Datum Newlyn (ODN) which became the national height datum for the whole of Great Britain. The 100 years of sea level data now available have contributed significantly to many studies in oceanography, geology and climate change. This paper marks the centenary of this important station by reviewing the sea level (and, more recently, detailed land level) measurements and Newlyn’s contributions to UK cartography, geodesy and sea-level science in general. Recommendations are made on how sea and land level measurements at Newlyn might be enhanced in the future

    Chandra X-ray observations of the 3C295 cluster core

    Get PDF
    We examine the properties of the X-ray gas in the central regions of the distant (z=0.46), X-ray luminous cluster of galaxies surrounding the powerful radio source 3C 295, using observations made with the Chandra Observatory. Between radii of 50-500 kpc, the cluster gas is approximately isothermal with an emission-weighted temperature, kT ~5 keV. Within the central 50 kpc radius this value drops to kT ~3.7 keV. The spectral and imaging Chandra data indicate the presence of a cooling flow within the central 50 kpc radius of the cluster, with a mass deposition rate of approximately 280 solar masses per year. We estimate an age for the cooling flow of 1-2 Gyr, which is approximately one thousand times older than the central radio source. We find no evidence in the X-ray spectra or images for significant heating of the X-ray gas by the radio source. We report the detection of an edge-like absorption feature in the spectrum for the central 50 kpc region, which may be due to oxygen-enriched dust grains. The implied mass in metals seen in absorption could have been accumulated by the cooling flow over its lifetime. Combining the results on the X-ray gas density profile with radio measurements of the Faraday rotation measure in 3C295, we estimate the magnetic field strength in the region of the cluster core to be B ~12 \muG.Comment: 27 pages, 16 figs, 5 tables. Accepted for publication in MNRA

    Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates

    Get PDF
    Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73) Tg N yr?1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1) Tg C from cell counts and to 89 (43–150) Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr?1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2 fixation has underestimated the true rates. As a result, one can expect that future rate measurements will shift the mean N2 fixation rate upward and may result in significantly higher estimates for the global N2 fixation. The evolving database can nevertheless be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models, keeping in mind that future rate measurements may rise in the future. The database is stored in PANGAEA (doi:10.1594/PANGAEA.774851)
    corecore