45 research outputs found
Consequences of Intraspecific Variation in Seed Dispersal for Plant Demography, Communities, Evolution and Global Change
As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward
Consequences of Intraspecific Variation in Seed Dispersal for Plant Demography, Communities, Evolution and Global Change
As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward
Implementation of multimodal computed tomography in a telestroke network : five-year experience
Aims: Penumbral selection is best-evidence practice for thrombectomy in the 6-24 hour window. Moreover, it helps to identify the best responders to thrombolysis. Multimodal computed tomography (mCT) at the primary centre—including noncontrast CT, CT perfusion, and CT angiography—may enhance reperfusion therapy decision-making. We developed a network with five spoke primary stroke sites and assessed safety, feasibility, and influence of mCT in rural hospitals on decision-making for thrombolysis. Methods: Consecutive patients assessed via telemedicine from April 2013 to June 2018. Clinical outcomes were measured, and decision-making compared using theoretical models for reperfusion therapy applied without mCT guidance. Symptomatic intracranial hemorrhage (sICH) was assessed according to Safe Implementation of Treatments in Stroke Thrombolysis Registry criteria. Results: A total of 334 patients were assessed, 240 received mCT, 58 were thrombolysed (24.2%). The mean age of thrombolysed patients was 70 years, median baseline National Institutes of Health Stroke Scale was 10 (IQR 7-18) and 23 (39.7%) had a large vessel occlusion. 1.7% had sICH and 3.5% parenchymal hematoma. Three months poststroke, 55% were independent, compared with 70% in the non-thrombolysed group. Conclusion: Implementation of CTP in rural centers was feasible and led to high thrombolysis rates with low rates of sICH. © 2019 The Authors. CNS Neuroscience & Therapeutics Published by John Wiley & Sons Ltd
Advancing an interdisciplinary framework to study seed dispersal ecology
Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant’s life history and environmental variability that ultimately influences a population’s ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity
Recommended from our members
The total dispersal kernel: a review and future directions
The distribution and abundance of plants across the world depends in part on their ability to move, which is commonly characterized by a dispersal kernel. For seeds, the total dispersal kernel (TDK) describes the combined influence of all primary, secondary and higher-order dispersal vectors on the overall dispersal kernel for a plant individual, population, species or community. Understanding the role of each vector within the TDK, and their combined influence on the TDK, is critically important for being able to predict plant responses to a changing biotic or abiotic environment. In addition, fully characterizing the TDK by including all vectors may affect predictions of population spread. Here, we review existing research on the TDK and discuss advances in empirical, conceptual modelling and statistical approaches that will facilitate broader application. The concept is simple, but few examples of well-characterized TDKs exist. We find that significant empirical challenges exist, as many studies do not account for all dispersal vectors (e.g. gravity, higher-order dispersal vectors), inadequately measure or estimate long-distance dispersal resulting from multiple vectors and/or neglect spatial heterogeneity and context dependence. Existing mathematical and conceptual modelling approaches and statistical methods allow fitting individual dispersal kernels and combining them to form a TDK; these will perform best if robust prior information is available. We recommend a modelling cycle to parameterize TDKs, where empirical data inform models, which in turn inform additional data collection. Finally, we recommend that the TDK concept be extended to account for not only where seeds land, but also how that location affects the likelihood of establishing and producing a reproductive adult, i.e. the total effective dispersal kernel
Understanding of Coupled Terrestrial Carbon, Nitrogen and Water Dynamics—An Overview
Coupled terrestrial carbon (C), nitrogen (N) and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc.) and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling) the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i) Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii) there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem) models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO2 mixing ratio towers and chambers
Employing plant functional groups to advance seed dispersal ecology and conservation
Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption
The ineluctable constraints of thermodynamics in the aetiology of obesity
We exploit the detail-independence feature of thermodynamics to examine issues related to the development of obesity. We adopt a 'global' approach consistent with focus on the first law of thermodynamics - namely that the metabolic energy provided by dietary foodstuffs has only three possible fates: the performance of work (be it microscopic or macroscopic), the generation of heat, or storage - primarily in the form of adipose tissue. Quantification of the energy expended, in the form of fat metabolised, during selected endurance events, reveals the inherent limitation of over-reliance on exercise as a primary agent of weight loss. This result prompts examination of various (non-exercise based) possibilities of increasing the rate of heat loss. Since these, too, give little cause for optimism, we are obliged to conclude that obesity can be prevented, or weight loss achieved, only if exercise is supplemented by reduction of food intake
The efficiency of muscle contraction
When a muscle contracts and shortens against a load, it performs work. The performance of work is fuelled by the expenditure of metabolic energy, more properly quantified as enthalpy (i.e., heat plus work). The ratio of work performed to enthalpy produced provides one measure of efficiency. However, if the primary interest is in the efficiency of the actomyosin cross-bridges, then the metabolic overheads associated with basal metabolism and excitation-contraction coupling, together with those of subsequent metabolic recovery process, must be subtracted from the total heat and work observed. By comparing the cross-bridge work component of the remainder to the Gibbs free energy of hydrolysis of ATP, a measure of thermodynamic efficiency is achieved. We describe and quantify this partitioning process, providing estimates of the efficiencies of selected steps, while discussing the errors that can arise in the process of quantification. The dependence of efficiency on animal species, fibre-type, temperature, and contractile velocity is considered. The effect of contractile velocity on energetics is further examined using a two-state, Huxley-style, mathematical model of cross-bridge cycling that incorporates filament compliance. Simulations suggest only a modest effect of filament compliance on peak efficiency, but progressively larger gains (vis-a-vis the rigid filament case) as contractile velocity approaches Vmax. This effect is attributed primarily to a reduction in the component of energy loss arising from detachment of cross-bridge heads at non-zero strain