47 research outputs found
Training scholars in dissemination and implementation research for cancer prevention and control: A mentored approach
Abstract Background As the field of D&I (dissemination and implementation) science grows to meet the need for more effective and timely applications of research findings in routine practice, the demand for formalized training programs has increased concurrently. The Mentored Training for Dissemination and Implementation Research in Cancer (MT-DIRC) Program aims to build capacity in the cancer control D&I research workforce, especially among early career researchers. This paper outlines the various components of the program and reports results of systematic evaluations to ascertain its effectiveness. Methods Essential features of the program include selection of early career fellows or more experienced investigators with a focus relevant to cancer control transitioning to a D&I research focus, a 5-day intensive training institute, ongoing peer and senior mentoring, mentored planning and work on a D&I research proposal or project, limited pilot funding, and training and ongoing improvement activities for mentors. The core faculty and staff members of the MT-DIRC program gathered baseline and ongoing evaluation data regarding D&I skill acquisition and mentoring competency through participant surveys and analyzed it by iterative collective reflection. Results A majority (79%) of fellows are female, assistant professors (55%); 59% are in allied health disciplines, and 48% focus on cancer prevention research. Forty-three D&I research competencies were assessed; all improved from baseline to 6 and 18Â months. These effects were apparent across beginner, intermediate, and advanced initial D&I competency levels and across the competency domains. Mentoring competency was rated very highly by the fellowsââhigher than rated by the mentors themselves. The importance of different mentoring activities, as rated by the fellows, was generally congruent with their satisfaction with the activities, with the exception of relatively greater satisfaction with the degree of emotional support and relatively lower satisfaction for skill building and opportunity initially. Conclusions These first years of MT-DIRC demonstrated the programâs ability to attract, engage, and improve fellowsâ competencies and skills and implement a multicomponent mentoring program that was well received. This account of the program can serve as a basis for potential replication and evolution of this model in training future D&I science researchers
Eotaxin and FGF enhance signaling through an Extracellular signal-related kinase (ERK)-dependent pathway in the pathogenesis of Eosinophilic Esophagitis
<p>Abstract</p> <p>Background</p> <p>Eosinophilic esophagitis (EoE) is characterized by the inflammation of the esophagus and the infiltration of eosinophils into the esophagus, leading to symptoms such as dysphagia and stricture formation. Systemic immune indicators like eotaxin and fibroblast growth factor were evaluated for possible synergistic pathological effects. Moreover, blood cells, local tissue, and plasma from EoE and control subjects were studied to determine if the localized disease was associated with a systemic effect that correlated with presence of EoE disease.</p> <p>Method</p> <p>Real-time polymerase chain reaction from peripheral blood mononuclear cells (PBMC), immunohistochemistry from local esophageal biopsies, fluid assays on plasma, and fluorescence-activated cell sorting on peripheral blood cells from subjects were used to study the systemic immune indicators in newly diagnosed EoE (n = 35), treated EoE (n = 9), Gastroesophageal reflux disease (GERD) (n = 8), ulcerative colitis (n = 5), Crohn's disease (n = 5), and healthy controls (n = 8).</p> <p>Result</p> <p>Of the transcripts tested for possible immune indicators, we found extracellular signal-regulated kinase (ERK), Bcl-2, bFGF (basic fibroblast growth factor), and eotaxin levels were highly upregulated in PBMC and associated with disease presence of EoE. Increased FGF detected by immunohistochemistry in esophageal tissues and in PBMC was correlated with low levels of pro-apoptotic factors (Fas, Caspase 8) in PBMC from EoE subjects. Plasma-derived bFGF was shown to be the most elevated and most specific in EoE subjects in comparison to healthy controls and disease control subjects.</p> <p>Conclusion</p> <p>We describe for the first time a possible mechanism by which increased FGF is associated with inhibiting apoptosis in local esophageal tissues of EoE subjects as compared to controls. Eotaxin and FGF signaling pathways share activation through the ERK pathway; together, they could act to increase eosinophil activation and prolong the half-life of eosinophils in local tissues of the esophagus in EoE subjects.</p
Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group.
Funder: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)Funder: National Center for Research Resources under award number 1 C06 RR12463-01, VA Merit Review Award IBX004121A from the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service, the DOD Prostate Cancer Idea Development Award (W81XWH-15-1-0558), the DOD Lung Cancer Investigator-Initiated Translational Research Award (W81XWH-18-1-0440), the DOD Peer Reviewed Cancer Research Program (W81XWH-16-1-0329), the Ohio Third Frontier Technology Validation Fund, the Wallace H. Coulter Foundation Program in the Department of Biomedical Engineering and the Clinical and Translational Science Award Program (CTSA) at Case Western Reserve University.Funder: Susan G Komen Foundation (CCR CCR18547966) and a Young Investigator Grant from the Breast Cancer Alliance.Funder: The Canadian Cancer SocietyFunder: Breast Cancer Research Foundation (BCRF), Grant No. 17-194Assessment of tumor-infiltrating lymphocytes (TILs) is increasingly recognized as an integral part of the prognostic workflow in triple-negative (TNBC) and HER2-positive breast cancer, as well as many other solid tumors. This recognition has come about thanks to standardized visual reporting guidelines, which helped to reduce inter-reader variability. Now, there are ripe opportunities to employ computational methods that extract spatio-morphologic predictive features, enabling computer-aided diagnostics. We detail the benefits of computational TILs assessment, the readiness of TILs scoring for computational assessment, and outline considerations for overcoming key barriers to clinical translation in this arena. Specifically, we discuss: 1. ensuring computational workflows closely capture visual guidelines and standards; 2. challenges and thoughts standards for assessment of algorithms including training, preanalytical, analytical, and clinical validation; 3. perspectives on how to realize the potential of machine learning models and to overcome the perceptual and practical limits of visual scoring
Recommended from our members
Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer
Abstract: Stromal tumor-infiltrating lymphocytes (sTILs) are important prognostic and predictive biomarkers in triple-negative (TNBC) and HER2-positive breast cancer. Incorporating sTILs into clinical practice necessitates reproducible assessment. Previously developed standardized scoring guidelines have been widely embraced by the clinical and research communities. We evaluated sources of variability in sTIL assessment by pathologists in three previous sTIL ring studies. We identify common challenges and evaluate impact of discrepancies on outcome estimates in early TNBC using a newly-developed prognostic tool. Discordant sTIL assessment is driven by heterogeneity in lymphocyte distribution. Additional factors include: technical slide-related issues; scoring outside the tumor boundary; tumors with minimal assessable stroma; including lymphocytes associated with other structures; and including other inflammatory cells. Small variations in sTIL assessment modestly alter risk estimation in early TNBC but have the potential to affect treatment selection if cutpoints are employed. Scoring and averaging multiple areas, as well as use of reference images, improve consistency of sTIL evaluation. Moreover, to assist in avoiding the pitfalls identified in this analysis, we developed an educational resource available at www.tilsinbreastcancer.org/pitfalls
Recommended from our members
Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group
Funder: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)Funder: National Center for Research Resources under award number 1 C06 RR12463-01, VA Merit Review Award IBX004121A from the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service, the DOD Prostate Cancer Idea Development Award (W81XWH-15-1-0558), the DOD Lung Cancer Investigator-Initiated Translational Research Award (W81XWH-18-1-0440), the DOD Peer Reviewed Cancer Research Program (W81XWH-16-1-0329), the Ohio Third Frontier Technology Validation Fund, the Wallace H. Coulter Foundation Program in the Department of Biomedical Engineering and the Clinical and Translational Science Award Program (CTSA) at Case Western Reserve University.Funder: Susan G Komen Foundation (CCR CCR18547966) and a Young Investigator Grant from the Breast Cancer Alliance.Funder: The Canadian Cancer SocietyFunder: Breast Cancer Research Foundation (BCRF), Grant No. 17-194Abstract: Assessment of tumor-infiltrating lymphocytes (TILs) is increasingly recognized as an integral part of the prognostic workflow in triple-negative (TNBC) and HER2-positive breast cancer, as well as many other solid tumors. This recognition has come about thanks to standardized visual reporting guidelines, which helped to reduce inter-reader variability. Now, there are ripe opportunities to employ computational methods that extract spatio-morphologic predictive features, enabling computer-aided diagnostics. We detail the benefits of computational TILs assessment, the readiness of TILs scoring for computational assessment, and outline considerations for overcoming key barriers to clinical translation in this arena. Specifically, we discuss: 1. ensuring computational workflows closely capture visual guidelines and standards; 2. challenges and thoughts standards for assessment of algorithms including training, preanalytical, analytical, and clinical validation; 3. perspectives on how to realize the potential of machine learning models and to overcome the perceptual and practical limits of visual scoring
Recommended from our members
Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials
Funder: Breast Cancer Research Foundation (BCRF); doi: https://doi.org/10.13039/100001006Abstract: Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting
Increased circulating chemerin in patients with advanced carotid stenosis
Abstract Background Chemerin is an adipokine which plays a crucial role in atherosclerosis. Here, we examined whether circulating chemerin is enhanced in patients with advanced carotid stenosis. Methods Chemerin was quantified in 178 patients prior to carotid end arterectomy (CEA) and in age- and gender-matched controls (nâ=â163). Chemerin levels were related to anthropometric, clinical and metabolic characteristics of the patients. Results Chemerin levels were higher in patients compared to controls (pâ<â 0.001). Chemerin correlated to parameters associated with inflammation such as C-reactive protein (CRP, pâ<â 0.001), leukocyte blood count (pâ<â 0.001) and circulating TNF-α (pâ=â0.004) in the patients. Chemerin levels did not differ between asymptomatic (nâ=â93) and symptomatic patients who experienced an ischemic event within 6 months prior to CEA (nâ=â85). However, in the case of high-grade carotid stenosis (â„ 90%), chemerin levels were higher in symptomatic (nâ=â44) compared to asymptomatic patients (nâ=â41, pâ=â0.014). Chemerin was increased in patients with (nâ=â50) compared to patients without (nâ=â128) coronary artery disease (CAD, pâ=â0.002). A high level of chemerin increases the risk for CAD in patients (pâ=â0.0013). Conclusions Circulating chemerin is increased and correlates to inflammatory parameters in patients with advanced carotid stenosis
Globins and hemogenic cells in the marine Annelid Platynereis dumerilii shed new light on blood evolution in Bilaterians
How vascular systems and their respiratory pigments evolved is still debated. To unravel blood evolution in Bilaterians, we studied the marine Annelid Platynereis dumerilii. Platynereis exhibits a closed vascular system filled with extracellular hemoglobin. An exhaustive screen in Platynereis genome reveals a family of 17 globins. Seven extracellular globins are produced by specialized hemogenic cells lining the vessels of the segmental appendages of the worm, serving as gills. Extracellular globins are absent in juveniles then accumulate considerably as the worm size and activity increase, culminating in swarming adults. Phylogenetic analyses with deep screenings in complete genomes establish that five globin genes (stem globins) were present in the last common ancestor of Bilaterians. All known Bilaterian blood globins are derived convergently from a single presumably ubiquitously expressed, intracellular stem globin gene. All five globin types are retained in Platynereis, reinforcing this species status as a key slow evolving genome within Bilaterians
Nutritional Needs and Support for Children with Chronic Liver Disease
Malnutrition has become a dangerously common problem in children with chronic liver disease, negatively impacting neurocognitive development and growth. Furthermore, many children with chronic liver disease will eventually require liver transplantation. Thus, this association between malnourishment and chronic liver disease in children becomes increasingly alarming as malnutrition is a predictor of poorer outcomes in liver transplantation and is often associated with increased morbidity and mortality. Malnutrition requires aggressive and appropriate management to correct nutritional deficiencies. A comprehensive review of the literature has found that infants with chronic liver disease (CLD) are particularly susceptible to malnutrition given their low reserves. Children with CLD would benefit from early intervention by a multi-disciplinary team, to try to achieve nutritional rehabilitation as well as to optimize outcomes for liver transplant. This review explains the multifactorial nature of malnutrition in children with chronic liver disease, defines the nutritional needs of these children, and discusses ways to optimize their nutritional