273 research outputs found

    Upgrade of the HadGEM3-A based attribution system to high resolution and a new validation framework for probabilistic event attribution

    Get PDF
    We present a substantial upgrade of the Met Office system for the probabilistic attribution of extreme weather and climate events with higher horizontal and vertical resolution (60 km mid-latitudes and 85 vertical levels), the latest Hadley Centre atmospheric and land model (ENDGame dynamics with GA6.0 science and JULES at GL6.0) as well as an updated forcings set. A new set of experiments designed for the evaluation and implementation of an operational attribution service are described which consist of pairs of multi-decadal stochastic physics ensembles continued on a season by season basis by large ensembles that are able to sample extreme at- mospheric states possible in the recent past. Diagnostics from these experiments form the HadGEM3-A contribution to the international Climate of the 20th Century Plus (C20Cþ) project and were analysed under the European Climate and Weather Events: Interpretation and Attribution (EUCLEIA) event attribution project as well as contributing to the Climate Science for Service Partnership (CSSP)-China programme. After discussing the framing issues surrounding questions that can be asked with our system we construct a novel approach to the evaluation of atmosphere-only ensembles intended for event attribution, in the process highlighting and clarifying the distinction between hindcast skill and model performance. A framework based around assessing model representation of predictable components and ensuring exchangeability of model and real world statistics leads to a form of detection and attribution to boundary condition forcing as a means of quantifying one degree of freedom of potential model error and allowing for the bias correction of event probabilities and resulting probability ratios. This method is then applied systematically across the globe to assess contributions from anthropogenic influence and specific boundary conditions to the changing probability of observed and record seasonal mean temperatures of four recent 3-month seasons from March 2016–February 2017

    DADA: data assimilation for the detection and attribution of weather and climate-related events

    Get PDF
    A new nudging method for data assimilation, delay‐coordinate nudging, is presented. Delay‐coordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time step. Numerical experiments with a low‐order chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an unoptimized formulation of the delay‐nudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delay‐coordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonal‐to‐decadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures

    Evaluation of the HadGEM3-A simulations in view of detection and attribution of human influence on extreme events in Europe

    Get PDF
    A detailed analysis is carried out to assess the HadGEM3-A global atmospheric model skill in simulating extreme temperatures, precipitation and storm surges in Europe in the view of their attribution to human influence. The analysis is performed based on an ensemble of 15 atmospheric simulations forced with observed Sea Surface Temperature of the 54 year period 1960-2013. These simulations, together with dual simulations without human influence in the forcing, are intended to be used in weather and climate event attribution. The analysis investigates the main processes leading to extreme events, including atmospheric circulation patterns, their links with temperature extremes, land-atmosphere and troposphere-stratosphere interactions. It also compares observed and simulated variability, trends and generalized extreme value theory parameters for temperature and precipitation. One of the most striking findings is the ability of the model to capture North Atlantic atmospheric weather regimes as obtained from a cluster analysis of sea level pressure fields. The model also reproduces the main observed weather patterns responsible for temperature and precipitation extreme events. However, biases are found in many physical processes. Slightly excessive drying may be the cause of an overestimated summer interannual variability and too intense heat waves, especially in central/northern Europe. However, this does not seem to hinder proper simulation of summer temperature trends. Cold extremes appear well simulated, as well as the underlying blocking frequency and stratosphere-troposphere interactions. Extreme precipitation amounts are overestimated and too variable. The atmospheric conditions leading to storm surges were also examined in the Baltics region. There, simulated weather conditions appear not to be leading to strong enough storm surges, but winds were found in very good agreement with reanalyses. The performance in reproducing atmospheric weather patterns indicates that biases mainly originate from local and regional physical processes. This makes local bias adjustment meaningful for climate change attribution

    Apolipoprotein E Genotype and Cardiovascular Diseases in the Elderly

    Get PDF
    The apolipoprotein E (APOE) genotype is a genetic risk factor for dementia, Alzheimer’s disease, and cardiovascular disease (CVD). It includes three alleles (e2, e3, e4) that are located on chromosome 19q3.2. The e3 allele is the most common and is more common in people of Northern European ancestry and less common in those of Asian ancestry. Those with at least one e4 allele are at increased risk for CVD outcomes. It is well established that the presence of an e4 allele is linked to higher low-density lipoprotein cholesterol levels, even at young ages. Even though most CVD occurs in older people, there are few studies of the effects of APOE on CVD in older people. This review addresses recent research on the links between APOE, CVD, and vascular mechanisms by which APOE may affect CVD in the elderly
    corecore