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Understanding how human influence on climate is affecting precipitation around the 38	

world is immensely important for defining mitigation policies, and for adaptation 39	

planning. Yet despite increasing evidence for the influence of climate change on 40	

global patterns of precipitation, and expectations that significant changes in regional 41	

precipitation should have already occurred as a result of human influence on climate, 42	

compelling evidence of anthropogenic fingerprints on regional precipitation is 43	

obscured by observational and modelling uncertainties and is likely to remain so using 44	

current methods for years to come. This is in spite of substantial ongoing 45	

improvements in models, new reanalyses and a satellite record that spans over thirty 46	

years.  If we are to quantify how human-induced climate change is affecting the 47	

regional water cycle, we need to consider novel ways of identifying the effects of 48	

natural and anthropogenic influences on precipitation that take full advantage of our 49	

physical expectations. 50	

 51	

How rainfall is changing in a particular region is a question of great practical 52	

importance to societies. Floods and droughts threaten the lives and livelihoods of 53	

many people and enhancing their resilience is of major concern, particularly as 54	

anthropogenic climate change is expected to increase the frequency of floods and 55	

droughts1. These expected changes may, moreover, render risk assessments based 56	

purely on the historical record inaccurate. Well-planned adaptation to climate change 57	

thus requires information on how hazardous rainfall is changing in response to 58	

anthropogenic forcing.  Are we observing systematic changes or are we simply 59	

experiencing natural variability? This is the business of detection and attribution (Box 60	

1).  61	



New observations and improved models have enabled the detection of anthropogenic 62	

change in the water cycle at large spatial scales2, 3,4, although even here large 63	

uncertainties remain. The Intergovernmental Panel on Climate Change5 (IPCC) in its 64	

Fifth Assessment Report (AR5) concludes that it is likely that anthropogenic 65	

influences have affected the global water cycle since 1960. In Section TS. 6.3 of AR5, 66	

two key uncertainties which limit confidence in attribution assessments of the causes 67	

of precipitation changes are recognised as 1) observational and modelling 68	

uncertainties, and 2) the large effect of internal variability. Hence there is only 69	

medium confidence that there is an anthropogenic contribution to global-scale changes 70	

in precipitation patterns over land since 1950, with higher levels of confidence 71	

precluded by uncertainty in models and observations and the large internal variability 72	

in precipitation6.    73	

At continental scales, there has been some limited success in detecting anthropogenic 74	

changes in land precipitation.  Anthropogenically driven changes in zonal averages of 75	

land precipitation were detected by e.g., ref. 7 – although in some cases the results 76	

were found to be sensitive to the observational dataset used.  Anthropogenic trends in 77	

precipitation have also been detected in the northern mid-to-high latitude lands8, 9 and 78	

southwest Australia10, where in both regions there are large expected trends that are 79	

coherent over wide areas (Figure TS.16 of IPCC, 2013).  In general, however, 80	

detection and attribution of an anthropogenic signal at these scales is hampered by 81	

observational uncertainty and model error2, 6,8,9,11. Even the continental-scale studies 82	

described above are too coarse to inform assessments of the extent to which human-83	

induced climate change has affected changes affecting many people locally.  Because 84	

internal variability in precipitation tends to increase with reducing spatial scale there 85	

may be a tendency to assume that detection of an anthropogenic signal of change is 86	



more likely at global or continental scales than at regional scales.  In this context, by 87	

regional scales we refer to smaller spatial scales than ‘continental’, typically thinking 88	

of areas of the globe characterised by specific geographic and climatological 89	

features5.   90	

This perspective argues that analysis of changes in the processes governing internal 91	

variability in precipitation should facilitate the detection and attribution of 92	

anthropogenic changes at a range of spatial scales.  In some cases an anthropogenic 93	

signal may be easier to detect at regional scales, where we have a clearer expectation 94	

of forced changes8, 9,10. Above all progress in detection and attribution of changes in 95	

the water cycle requires the development of novel metrics, which should help 96	

facilitate the identification of significant changes in precipitation even in the presence 97	

of substantial modelling and observational uncertainty12. This should enable faster 98	

progress to be made than would be possible by simply waiting for models or 99	

observations to improve or by simply waiting for the signal of climate change to 100	

strengthen sufficiently to emerge from the noise of internal variability.   101	

We first compare physical expectations of global and regional anthropogenic changes 102	

in precipitation.  Next, we describe how spatial scale modifies the impact of model 103	

error and observational uncertainty on detection of these changes.  We then consider 104	

how novel methods of analysis can be brought to bear on detection and attribution of 105	

regional changes in precipitation.  Finally, we reflect on how our current models and 106	

observations can best be utilised to provide a robust view of anthropogenic change in 107	

regional precipitation. 108	

Expected changes on global and continental scales 109	



Based on the physical relation of Clausius-Clapeyron, surface warming is expected to 110	

result in an increase in water vapour concentrations at a rate of 6-7% per Kelvin13, 111	

given that the relative humidity is expected to remain nearly constant14.  This 112	

thermodynamic expectation of an intensification of the water cycle has been 113	

confirmed in changes in observed and simulated atmospheric moisture content over 114	

land and ocean15, 16,17,18, albeit in observations from recent years there is some 115	

evidence of a reduction of relative humidity over land19.   116	

Global mean precipitation is not, however, expected to scale with the increase in 117	

atmospheric moisture because it is controlled not by specific humidity, but by the 118	

energy budget of the troposphere.  The two complementary energy budget arguments 119	

are 1) the tropospheric latent heating during precipitation formation is balanced by the 120	

radiative cooling to outer space14, and 2) at the surface the latent heat flux (which is 121	

proportional to global mean evaporation and hence global mean precipitation) is 122	

balanced by the sensible and radiative heat fluxes 14,13,15,20. The warming of the 123	

troposphere increases the radiative cooling rate and hence the precipitation. However, 124	

if the warming is driven by an increase in greenhouse gases (GHGs), the increase in 125	

the radiative cooling rate is partly offset by the direct radiative effect of the GHGs, 126	

which is to decrease the radiative cooling rate. This implies that the precipitation 127	

response to GHG forcings is smaller per unit change in forcing, than it is for short 128	

wave radiative forcings like volcanic aerosol14. Overall anthropogenic forcings result 129	

in a lower rate of increase in precipitation globally than suggested by the Clausius-130	

Clapeyron relation14, 13,15,20,21,22.  131	

A pioneering study14 quantified the expected range of change in total global 132	

precipitation in response to CO2 driven warming, but found that even at large scales 133	

there was considerable variation in the expected spatial pattern of change. A key 134	



advance in the physical explanation of the response pattern of precipitation changes 135	

due to increasing GHGs was made by a later study15. They identified robust features 136	

of anthropogenic changes such as enhancement of the patterns of precipitation minus 137	

evaporation (P-E), poleward movement of the Hadley circulation and subsequent 138	

shifting of the arid subtropical subsidence regions and storm tracks, leading to the 139	

‘wet gets wetter’ and ‘dry gets drier’ paradigm. It has recently been found that 140	

although this paradigm has some validity over wet higher latitudes and dry subtropical 141	

land regions, it does not hold true everywhere. For example, humid to transitional 142	

regimes are shifting to drier conditions23. Other changes in large-scale rainfall patterns 143	

have been explained through a ‘warmer-get-wetter’ mechanism, by which warm SST 144	

patterns over the tropics cause increases in precipitation24. 145	

Expectation of regional changes 146	

Change in regional rainfall is a consequence both of thermodynamics and 147	

anthropogenic influence on dynamics25.  Human-induced depletion in stratospheric 148	

ozone, for example, is found to cause a poleward shift of the southern extratropical 149	

jets, which affect regional precipitation patterns in the Southern Hemisphere26, 27. The 150	

storm track in the Northern Hemisphere, and hence rainfall in Europe, are also 151	

affected by changes in stratospheric circulation28.  152	

More generally, the regional precipitation response to naturally occurring modes of 153	

variability, such as ENSO and the NAO, is influenced by the basic state of the 154	

atmosphere and ocean14, 29,30. It is to be expected therefore that anthropogenic 155	

perturbations to the basic state would lead to changes in regional teleconnection 156	

patterns.   157	



The regional character of anthropogenic precipitation change, therefore, results from 158	

complex interactions between natural variability and anthropogenic forcing. This is 159	

especially the case at regional scales.  Indeed, variability related to teleconnections is 160	

not likely to affect total precipitation over very large domains, because wetter 161	

conditions in one place tend to be balanced by dryer conditions elsewhere31.  In short, 162	

in order to disentangle the complex causes of regional precipitation change, we need 163	

to consider the following three aspects of the response: 1) external forcing may 164	

project onto internal variability, changing the amplitude or frequency of modes of 165	

climate variability, or altering the teleconnections that govern precipitation response, 166	

2) the fingerprint of external forcing may reflect both thermodynamic and dynamic 167	

changes through forced changes to atmospheric energetics, moisture content, and 168	

large-scale circulation, and 3) the precipitation responses to different external drivers 169	

such as greenhouse gases, aerosols, ozone, natural events will differ. 170	

Modelling and observational uncertainties  171	

Recent studies that have sought to detect and attribute anthropogenic signals in large-172	

scale zonal precipitation have compared observations to CMIP5 (Coupled Model 173	

Intercomparison Project 5) model simulations with and without anthropogenic 174	

forcings2, 3.  Anthropogenic increases in precipitation on global land and ocean are 175	

clear in model simulations (Figure 1a-c).  However attribution approaches require that 176	

like is compared with like by comparing observations of the historical period to 177	

models that have been masked with the observational coverage.  This means that the 178	

clear signals seen in models are obscured by sparse observational coverage2. These 179	

findings indicate that global as well as zonal trends are distorted by the aliasing of 180	

sparse observational coverage onto the multi-model means.  181	



The robustness of the detection of global and large-scale trends (Figures 10.10 & 182	

10.A.2 of ref. 6) needs to be tested by comparing model data with different datasets of 183	

long-term observations. Ref. 2, for example, detected seasonal changes in zonal-mean 184	

precipitation attributable to human activities in four observational datasets – albeit 185	

only for March-April-May and December-January-February. However, the 186	

magnitudes of the temporal fingerprint of mid-to-high latitude positive trends and low 187	

latitude negative trends vary between observational datasets (Figure 2). In fact, 188	

anthropogenic changes are detected for all seasons in only one of the observational 189	

datasets3.  The sensitivity of findings to observational dataset illustrates the barriers 190	

imposed by observational uncertainty. 191	

The above discussion has focussed on uncertainties in observations of precipitation.  192	

It should not be forgotten, however, that effective model-observation comparison 193	

relies on accurate observations, not only of the variable in question, but also of 194	

forcing factors, including natural and anthropogenic aerosol. It has been found, for 195	

example, that natural desert dust aerosols from North Africa and West Asia are 196	

positively correlated to Indian summer monsoon rainfall on short time scales, with the 197	

dust-induced heating favouring increased moisture convergence over the Arabian 198	

peninsula and hence the westerly flow and precipitation over the Indian 199	

subcontinent32. Such model based findings point to the increasing need for an 200	

improved understanding of the climatic response to aerosols, which will require more 201	

systematic modelling experiments exploring the sensitivity of the precipitation 202	

response to aerosol forcing uncertainty as well as improvements in the representation 203	

of aerosol forcing in models. 204	

 Many of the impacts of a changing water cycle are felt at regional and local scales 205	

rather than at continental or global scales. Observational uncertainty at any given grid 206	



point (of resolution of a few hundreds of kms) may be greatest at these scales 207	

(http://sciforum.net/conference/66/paper/2901). Paradoxically, however, 208	

observational uncertainty may be less of a barrier to attribution at the regional than at 209	

the global level.  At the largest spatial scales, many of the detection and attribution 210	

issues related to observational uncertainty stem from sparse spatial sampling2 in 211	

observations which means that the trends from models and observations can be badly 212	

distorted, losing much of the underlying signals. At local scales, in contrast, 213	

inconsistency in spatial sampling is less likely to contribute significantly to 214	

observational uncertainty.  Instead, observational uncertainty reflects the sparcity of 215	

ground observations and consequent measurement/calibration errors. Such uncertainty 216	

may not, in itself, preclude robust detection and attribution of anthropogenic change 217	

in some regions, providing there exist temporally consistent ground or satellite based 218	

rainfall estimates. Indeed, at these scales, detection and attribution may be hampered 219	

more by the challenge of comparing models and observations, than by observational 220	

uncertainty itself.  This is, in part because there are large discrepancies between the 221	

locations of simulated and observed features in the climatologies of precipitation 222	

which might be expected to cause differences in the anthropogenic response33.  These 223	

discrepancies are compounded by the lack of robustness in model-simulated internal 224	

variability34 causing uncertainty in the fingerprint3, 35, or under sampling of the 225	

observed variability36 – which as described in earlier sections are a particularly serious 226	

issue at the regional scale.  227	

A clearer view 228	

The success of any approach to detection and attribution is contingent on the model’s 229	

ability to represent the relevant processes over a particular region and season. 230	

Structural uncertainties in climate models (due to the differences in models’ structure 231	



leading to individual model errors), although reduced since the Fourth Assessment 232	

Report37, 38 (AR4), remain as a barrier to quantifying robust change in precipitation on 233	

regional scales39.  234	

The need for improved process-representation has motivated recent work on improved 235	

model dynamics and resolution40, and the incorporation of individual processes and 236	

complex models of individual parts of the climate system41. High horizontal and 237	

vertical resolution and improved parameterisations in climate models have been 238	

shown to improve representation in models of processes, such as the vorticity of 239	

tropical cyclones, storm dynamics, atmospheric fronts, convection and blocking, 240	

clouds and their interactions with aerosols, gravity waves, ocean-biogeochemistry, 241	

land and sea-ice, boundary layer and land-surface processes, and strength of the local 242	

hydrological cycle40, 41, 42, 43, 44, 45. The development of both high-resolution climate 243	

models and Earth System Models (ESMs) are thus instrumental in tackling regional 244	

climate problems. Ref. 40, for example, performed climate change experiments using 245	

a 1.5 km resolution regional climate model and projected future increase in heavy 246	

downpours over the UK. They illustrated that explicit convection and local storm 247	

dynamics are important in simulating the fine temporal and spatial scales of UK 248	

summer rainfall.   249	

Compared to CMIP3 models, many CMIP5 models represent first and second indirect 250	

effect of aerosols and improved aerosol-cloud representations.  On large spatial 251	

scales, these significant improvements in climate model representation of aerosols 252	

have now enabled improved simulation of inter-decadal variability in temperature and 253	

precipitation35, 46. A weakening of the Northern Hemisphere land precipitation 254	

between the 1950s and 1980s and a subsequent recovery has been detected and 255	

attributed to increasing anthropogenic aerosols during 1950 to 1980s followed by a re-256	



emergence of the greenhouse gas signal relative to the anthropogenic aerosol signal in 257	

later years35.   Models with representation of the indirect effect of sulphate aerosols, 258	

together with the direct effect of sulphate aerosols perform better in representing the 259	

rate of decrease of precipitation in the 1950s and the recovery in the 1980s than the 260	

models that exclude the indirect effect46 although models still have shortcomings in 261	

representing the timing of the recovery. There is thus a scientific opportunity to use 262	

these newly available simulations to decipher the joint influence of anthropogenic 263	

aerosols and greenhouse gas emissions on regional precipitation, and hence to detect 264	

anthropogenic trends.    265	

New methodologies  266	

The base climate is expected to vary from one model to another.  Averaging 267	

simplistically over output from many models may therefore obscure signals of 268	

anthropogenic change. For instance, variation between models of the location and 269	

seasonal timing of precipitation may hamper robust assessment of changes in the 270	

mean33, 47,48. Novel methods of accounting for the mismatches between model 271	

climatologies offer a means of tackling the problem of consistent model changes 272	

being distorted by differences in climatological features (eg. convergence zones) both 273	

between models, and between models and observations33, 49. In order to correct feature 274	

location errors in GCMs, ref. 33 applied a warping method, which has been used in 275	

brain imagery registration, to monthly precipitation fields. The warping technique was 276	

found to improve the detectability of human influence49. Other model-observation 277	

comparison methods such as the model-by-model approach48 and space-scale 278	

smoothing47, which consider individual model runs as opposed to the multi-model 279	

ensemble mean, have also been shown to reduce feature-location biases and hence to 280	

identify robust changes in the location and magnitude of zonal extremes. 281	



Natural variability, as well as systematic bias in models, can obscure part of the signal 282	

of anthropogenic change in precipitation. For example, the anthropogenic effect on 283	

the precipitation response to natural modes of variability is superposed on natural 284	

variation in the amplitude and frequency of these modes50, 51,52,53.  Aliasing natural 285	

internal variability and changes due to anthropogenic forcing in this manner would be 286	

expected to cause variations in the anthropogenic effect on regional precipitation.  So 287	

if, say, greenhouse gas forcing modifies the precipitation response to ENSO in a given 288	

region, the anthropogenic expression of precipitation change is more pronounced 289	

during periods when ENSO is active.     These periods cannot be expected to coincide 290	

in free-running coupled climate models. Averaging precipitation over large model 291	

ensembles will therefore not reveal this component of the signal of anthropogenic 292	

influence.  Rather detection and attribution tecnhniques need to take explicit account 293	

of the drivers of precipitation variability (e.g. ENSO, NAO) and to their effects on 294	

precipitation (e.g. ENSO teleconnections) rather than just treating such variability as 295	

noise in the analysis. This type of process-based approach complements the 296	

application of detection and attribution techniques directly to regional precipitation 8,9 297	

and can yield a clearer understanding of the role of natural and anthropogenic 298	

factors71.   299	

On regional scales, therefore, in addition to analysing precipitation directly, it is 300	

productive to investigate the processes underlying precipitation change (process-based 301	

fingerprints).  Examples of such fingerprints are the increased risk of heavy rainfall 302	

during mid-latitude atmospheric river events in the UK54, 55 and New Zealand56; the 303	

poleward migration of the storm track47 (Figure 3) and the large scale dynamical 304	

implications of an expected intensification of the hydrological cycle15, 20, 57,58 that, at 305	

least over non-water limited regions23 of the earth including the oceans, many wet 306	



regions tend to get wetter and dry regions drier.  As pointed out earlier it should be 307	

noted that the over simplicity of this expectation from theory and models is currently 308	

under discussion23. However, a temporal response pattern with wet tropical regions 309	

getting wetter and dry regions getting drier was apparent in simulations of the recent 310	

past and future projections from CMIP5 models and was consistent with satellite 311	

rainfall observations for the tropical region20. ENSO variability can cause increase or 312	

decrease of regional rainfall over the land depending on the sign of the phase58 313	

suggesting if the ENSO characteristics change such precipitation response which is 314	

governed by remote SST patterns may change too. On fine scales, shifting of the wet 315	

and dry regions may make it difficult to identify this expected pattern of change23, 316	

59,60. However, using two fingerprints of wet and dry processes, ref. 57 detected an 317	

expected intensification of the water cycle partly attributable to human-induced 318	

greenhouse gas forcing.  319	

Anthropogenic change in precipitation is driven not only by greenhouse gas emission, 320	

but also by aerosol forcing which modulates regional precipitation. Sulphate aerosol 321	

and desert dust forcings influence changes in the wet and dry conditions of Sahelian 322	

water cycle caused primarily by changes in West African Monsoon rains through 323	

changes in SST feedbacks and subsequent shifts in tropical convergence zones61, 62. 324	

Simulated Sahel rainfall is found to weaken due to rapid changes in anthropogenic 325	

sulphur dioxide emissions from Asia and Europe through a fast (less than 3 weeks) 326	

aerosol-radiation and aerosol-cloud response and a slow (more than 3 weeks) 327	

response (i.e. decrease in West African Monsoon by adjustment of Walker 328	

circulation) caused by atmosphere and land-surface feedbacks63.  While there was a 329	

decrease of Sahel rainfall during the 1970s and 1980s since then there has been some 330	

recovery of Sahel rainfall which could have been influenced by increasing levels of 331	



greenhouse gases in the atmosphere as well as changes in anthropogenic aerosol 332	

precursor emissions64.   333	

Event attribution 334	

The previous discussion has highlighted the importance of identifying and isolating 335	

processes underlying anthropogenic change in precipitation. This can be 336	

accomplished, as described in the studies cited above, by explicitly isolating candidate 337	

processes and investigating how they are affected by anthropogenic climate change. A 338	

further refinement is to investigate the anthropogenic contribution to the processes 339	

underpinning individual extreme events – a technique known as event attribution.  340	

Event attribution studies seek to determine how anthropogenic forcings have altered 341	

the magnitude or probability of a particular type of extreme weather or climate-related 342	

event as experienced in the observed record65, 66, 67. In recent years efforts have been 343	

made to carry out such studies shortly after the events in question, for example in the 344	

publication of an annual series of reports which explain extreme events of the 345	

previous year from a climate perspective68. However while there is increasing 346	

evidence that robust attribution statements can be made about an anthropogenic 347	

contribution to the likelihood of many extreme warm events, the role of human 348	

influences on extreme precipitation events is decidedly mixed69 consistent with 349	

previous findings about the difficulties of robustly attributing precipitation events. 350	

Nevertheless such diagnostic approaches to attribution have made some headway in 351	

breaking down the problem into thermodynamic and dynamical components70 and in 352	

devising modelling strategies to quantify the different contributions from 353	

anthropogenic and natural forcings and aspects of internal variability64. It is therefore 354	

becoming possible to attribute changes in probability of some types of regional 355	



extreme precipitation event through developing an understanding of the 356	

thermodynamic and dynamic contributors71, 72. Ref. 73 argues that in attributing 357	

extreme climate events it is more useful to regard the extreme circulation regime or 358	

weather event as being largely unaffected by climate change and to concentrate solely 359	

on the thermodynamic component of an anthropogenic impact on the event in 360	

question. However it is important to consider dynamic factors as well as 361	

thermodynamic factors and to consider the extent to which dynamical aspects may 362	

have changed since it is both that contribute to the risk of a particular event74, 71,72,75. 363	

Also attention should be given as to whether there are non-linear interactions between 364	

the two, as discussed above.  365	

The way ahead  366	

Based on our discussion of scientific opportunities and challenges, we emphasise that 367	

quantification of the effects of human influence on precipitation across the globe 368	

crucially depends on developing and applying process understanding. Given current 369	

observational uncertainties4 and limitations in models38 simply waiting for 370	

improvements in observations and models to deliver clearer detection and attribution 371	

results seems an insufficient response to the challenge of better understanding how 372	

climate change is affecting precipitation around the globe. For example some of the 373	

important recommendations proposed by ref. 4 such as the observational data rescue, 374	

improvements in the observational coverage and models could take years to 375	

implement. Clearly observations and models are continuously improving and 376	

detection and attribution analyses should take advantage of such advances. But 377	

adaptation decisions could be even better informed if it were possible to incorporate 378	

process understanding more in detection and attribution studies. Those adaptation 379	

decisions that are based on robust climate projections are much stronger where the 380	



projections are based on firm foundation of physical understanding and underpinned 381	

by robust attribution studies. Hence attribution studies are central to informed 382	

adaptation planning and decision making.  Even where large uncertainties remain, 383	

additional useful information could be obtained and applied in a risk-based 384	

framework60 based on an understanding of the likely mechanisms at work.   385	

In particular, we need to better understand the expected effect of anthropogenic 386	

climate change on modes of variability and their teleconnections with regional 387	

precipitation29.  Disentangling these effects will allow an improved understanding of 388	

the extent to which regional changes are anthropogenically caused versus being 389	

caused by natural variations, either internally generated within the climate system or 390	

externally forced, such as by solar variability or explosive volcanic eruptions. It is not 391	

always reasonable to consider internal variability simply as ‘noise’ to be filtered out.   392	

Recent process-based detection and attribution approaches47, which consider the 393	

signal or the forced response being thermodynamic and/or dynamic in origin, have 394	

shown some success. There is indication that the anthropogenic signal could also be 395	

expressed in part through changes in amplitude, frequency and modes of natural 396	

internal variability. An alternative approach would be to look directly at the 397	

anthropogenic signal as a net effect of rainfall changes due to a) thermodynamic 398	

contribution, b) dynamic contribution (which includes changes in circulation, modes 399	

of variability and changes in teleconnections due to changes in modes of variability). 400	

Analyses quantifying changes in natural internal variability76 would be a valuable 401	

addition to quantifying forced changes over regions where internal variability on 402	

interannual timescales is changing.  However, it is very difficult to robustly detect 403	

changes in observed variability for a highly noisy climate variable as precipitation. 404	



New metrics that best express robust changes in the water cycle would aid in 405	

identifying anthropogenic changes. For example this could involve calculating areas 406	

of land with precipitation changes at particular thresholds12 or could involve 407	

combining terrestrial observations of precipitation with oceanographic observations of 408	

salinity6.  409	

In summary, we have shown that, even in the face of imperfect models and 410	

observations, progress can be made in detecting and attributing changes in regional 411	

precipitation.  Improved process understanding, innovations in detection and 412	

attribution methodologies, and novel methods of confronting models with 413	

observations can now be brought to bear on this highly challenging problem. 414	

Development of high quality observational datasets and high-resolution models will 415	

be undoubtedly helpful and are likely to have substantial pay off over the longer term. 416	

But in the meantime, innovative methods for analysing the observations and models 417	

we have available now could yield important additional information to inform 418	

societies and policy makers about the nature of changing precipitation at fine spatial-419	

scales.  420	

 421	

Box 1. What is detection and attribution? 422	

Detection of a change is the process of demonstrating that climate has changed in 423	

some defined statistical sense, without providing a reason for that change77. 424	

Attribution of causes of the change is defined as the process of evaluating the relative 425	

contributions of multiple causal factors to a change or event with an assignment of 426	

statistical confidence6. Fingerprints are metrics or space-time patterns of the response 427	

of climate variables to anthropogenic forcings, such as greenhouse gas emissions, 428	

atmospheric pollutants, or natural forcings such as solar radiation changes and 429	



aerosols from explosive volcanic eruptions. Most of the recent detection and 430	

attribution studies use climate models78 to estimate the expected fingerprints of 431	

change and the uncertainty of their estimate in observations of the real world. For an 432	

overview of techniques, see Appendix 9.2 of AR462 and Section 10.2.1 of AR56.   433	

 434	
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Figure Legends 671	

Figure 1| Observational uncertainties due to sparse coverage obscure expected 672	

fingerprints of change: Time-series of global mean precipitation anomalies 673	

(mm/day) w.r.t the baseline period of 1961-90, simulated by CMIP5 models forced 674	

with, both anthropogenic and natural forcings (ALL in orangish red lines) and natural 675	

forcings only (NAT in blue lines). a) Land and Ocean, b) Land, and c) Ocean, with all 676	

grid points. Multi-model means are shown in thick solid lines. Green stars show 677	

statistically significant changes at 5 % level. The clear signals seen in simulations 678	

(above) are obscured by sparse observational coverage when the global land 679	

precipitation is masked by observational coverage (Ref. 2).  680	

Figure 2| Magnitudes of zonal mean land precipitation trends are dependent on 681	

observational datasets: Comparison of observed trends (solid lines) using 4 682	

observational datasets (Refs. 11, 79, 80, 81) for 1951-2005 (top). Range of CMIP5 683	

simulations are in grey shading and multi-model ensemble mean (MM) in black 684	

dashed line. Blue (orange) shadings show latitudes where all observed datasets show 685	

positive (negative) trends. Comparison of simulated trends (bottom) using CMIP5 686	

historical (ALL) simulations (individual simulations in grey dashed lines, multi-model 687	

mean in black dashed line), and the natural forcing only (NAT) simulations (MM in 688	

blue dashed lines) with the future (2006-2050) trend using RCP4.5 simulations (5-95 689	

% range is in green shading, and MM in green dashed lines). Blue (orange) shading 690	

indicates latitudinal regions where more than two thirds of the historical simulations 691	

show positive (negative) trends (Ref. 4).  692	



Figure 3| An example of simulated process-based fingerprint of anthropogenic 693	

precipitation change: Zonal mean boreal winter precipitation observations for 1990 694	

(left). Local extrema are marked in dark blue (midlatitude storm tracks), red 695	

(subtropical dry zones), and green (equatorial tropical peak). Cyan, purple, and yellow 696	

circles indicate half-max points. Multivariate fingerprint Fm(D,T) of forced 697	

precipitation change as thermodynamic (T) and dynamic (D) process indicators 698	

(right). Thermodynamic EOF loading is plotted on the vertical axis and the direction 699	

and magnitude of dynamic EOF loading are displayed as arrows showing the wet-700	

gets-wetter and dry-gets-drier pattern in precipitation intensity and the poleward 701	

extension of precipitation over storm track and subtropical arid latitudes in both 702	

hemispheres  (Ref. 47). 703	
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