210 research outputs found

    Formula-SAE: Shift System and Controls

    Get PDF
    Problem statement: Formula SAE has been at VCU for the last three years and the team is now getting to the point of having the formula car ready to run and drive. One of the things that needs to be finished for this to happen is the installation of a shifting system. Rationale: Once completed, the FSAE team will be one step closer to having a competition ready formula car. While a major part of the team is the members’ love of all things fast, we also believe that the car will provide exposure to the VCU School of Engineering through competitions and promotional events. Approach: This design will provide a reliable, safe, and user-friendly system that provides quick responding shifts for the FSAE formula car. A micro-controller is to be programmed to take shift commands from the driver (sent via paddles located on the steering column), and process them into signals. These signals will then be sent to a pneumatic system that will perform the clutch and shift operations. In addition, the micro-controller will provide feedback of its operation to the driver using instrument cluster LED indicators. Anticipated Results and Conclusions: Currently, the team plans on having the system designed and installed well in advance of April 2015. The system will provide 2 driving modes: one for the drag portion of competition and one for the street course portion. Complete shifting times are predicted be to within 1 millisecond of driver input.https://scholarscompass.vcu.edu/capstone/1060/thumbnail.jp

    EXAFS Structural Determination of the Pt2(P2O5H2)44– Anion in Solution

    Get PDF
    We present the first structural determination of the Pt2(P2O5H2)44– anion in solution by analyzing the extended X-ray absorption fine structure (EXAFS) spectrum of the Pt LIII edge. The data could be fit with a simple model involving single and multiple scattering paths to near and far P-atoms, bridging O-atoms, and the other Pt-atom in the binuclear complex. A Pt–Pt distance of 2.876(28) Å and a Pt–P bond length of 2.32(4) Å are obtained. These values are in line with distances found in previous X-ray diffraction studies. The assignment of the EXAFS spectrum of the Pt2(P2O5H2)44– anion in its ground state is required for future time-resolved X-ray absorption measurements with the goal of determining the structure and dynamics of the complex in the 1,3A2u excited states

    Femtosecond X-ray emission study of the spin cross-over dynamics in haem proteins

    Full text link
    In haemoglobin (consisting of four globular myoglobin-like subunits), the change from the low-spin (LS) hexacoordinated haem to the high spin (HS) pentacoordinated domed form upon ligand detachment and the reverse process upon ligand binding, represent the transition states that ultimately drive the respiratory function. Visible-ultraviolet light has long been used to mimic the ligand release from the haem by photodissociation, while its recombination was monitored using time-resolved infrared to ultraviolet spectroscopic tools. However, these are neither element- nor spin-sensitive. Here we investigate the transition state in the case of Myoglobin-NO (MbNO) using femtosecond Fe Kalpha and Kbeta non-resonant X-ray emission spectroscopy (XES) at an X-ray free-electron laser upon photolysis of the Fe-NO bond. We find that the photoinduced change from the LS (S = 1/2) MbNO to the HS (S = 2) deoxy-myoglobin (deoxyMb) haem occurs in ca. 800 fs, and that it proceeds via an intermediate (S = 1) spin state. The XES observables also show that upon NO recombination to deoxyMb, the return to the planar MbNO ground state is an electronic relaxation from HS to LS taking place in ca. 30 ps. Thus, the entire ligand dissociation-recombination cycle in MbNO is a spin cross-over followed by a reverse spin cross-over process

    A self-referenced in-situ arrival time monitor for X-ray free-electron lasers

    Full text link
    We present a novel, highly versatile, and self-referenced arrival time monitor for measuring the femtosecond time delay between a hard X-ray pulse from a free-electron laser and an optical laser pulse, measured directly on the same sample used for pump-probe experiments. Two chirped and picosecond long optical supercontinuum pulses traverse the sample with a mutually fixed time delay of 970 fs, while a femtosecond X-ray pulse arrives at an instant in between both pulses. Behind the sample the supercontinuum pulses are temporally overlapped to yield near-perfect destructive interference in the absence of the X-ray pulse. Stimulation of the sample with an X-ray pulse delivers non-zero contributions at certain optical wavelengths, which serve as a measure of the relative arrival time of the X-ray pulse with an accuracy of better than 25 fs. We find an excellent agreement of our monitor with the existing timing diagnostics at the SACLA XFEL with a Pearson correlation value of 0.98. We demonstrate a high sensitivity to measure X-ray pulses with pulse energies as low as 30 μ\muJ. Using a free-flowing liquid jet as interaction sample ensures the full replacement of the sample volume for each X-ray/optical event, thus enabling its utility even at MHz repetition rate XFEL sources

    Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    Get PDF
    <div><p>Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway <i>i</i>.<i>e</i>., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times <i>vs</i>. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation.</p></div

    Spin-state studies with XES and RIXS: From static to ultrafast

    Get PDF
    We report on extending hard X-ray emission spectroscopy (XES) along with resonant inelastic X-ray scattering (RIXS) to study ultrafast phenomena in a pump-probe scheme at MHz repetition rates. The investigated systems include low-spin (LS) Fe-II complex compounds, where optical pulses induce a spin-state transition to their (sub)nanosecond-lived high-spin (HS) state. Time-resolved XES clearly reflects the spin-state variations with very high signal-to-noise ratio, in agreement with HS-LS difference spectra measured at thermal spin crossover, and reference HS-LS systems in static experiments, next to multiplet calculations. The 1s2p RIXS, measured at the Fe Is pre-edge region, shows variations after laser excitation, which are consistent with the formation of the HS state. Our results demonstrate that X-ray spectroscopy experiments with overall rather weak signals, such as RIXS, can now be reliably exploited to study chemical and physical transformations on ultrafast time scales. (C) 2012 Elsevier B.V. All rights reserved
    corecore