266 research outputs found
Relativistic Elastostatics I: Bodies in Rigid Rotation
We consider elastic bodies in rigid rotation, both nonrelativistically and in
special relativity. Assuming a body to be in its natural state in the absence
of rotation, we prove the existence of solutions to the elastic field equations
for small angular velocity.Comment: 25 page
Stress field and spin axis relaxation for inelastic triaxial ellipsoids
A compact formula for the stress tensor inside a self-gravitating, triaxial
ellipsoid in an arbitrary rotation state is given. It contains no singularity
in the incompressible medium limit. The stress tensor and the quality factor
model are used to derive a solution for the energy dissipation resulting in the
damping (short axis mode) or excitation (long axis) of wobbling. In the limit
of an ellipsoid of revolution, we compare our solution with earlier ones and
show that, with appropriate corrections, the differences in damping times
estimates are much smaller than it has been claimed.
This version implements corrections of misprints found in the MNRAS published
text.Comment: 14 pages, 6 figures, published in Monthly Notices RAS (containing
misprints
Direct Observation of Propagating Gigahertz Coherent Guided Acoustic Phonons in Free Standing Single Copper Nanowires
We report on gigahertz acoustic phonon waveguiding in free-standing single
copper nanowires studied by femtosecond transient reflectivity measurements.
The results are discussed on the basis of the semianalytical resolution of the
Pochhammer and Chree equation. The spreading of the generated Gaussian wave
packet of two different modes is derived analytically and compared with the
observed oscillations of the sample reflectivity. These experiments provide a
unique way to independently obtain geometrical and material characterization.
This direct observation of coherent guided acoustic phonons in a single
nano-object is also the first step toward nanolateral size acoustic transducer
and comprehensive studies of the thermal properties of nanowires
Recommended from our members
A 27 day persistence model of near-Earth solar wind conditions: a long lead-time forecast and a benchmark for dynamical models
Geomagnetic activity has long been known to exhibit approximately 27 day periodicity, resulting from solar wind structures repeating each solar rotation. Thus a very simple near-Earth solar wind forecast is 27 day persistence, wherein the near-Earth solar wind conditions today are assumed to be identical to those 27 days previously. Effective use of such a persistence model as a forecast tool, however, requires the performance and uncertainty to be fully characterized. The first half of this study determines which solar wind parameters can be reliably forecast by persistence and how the forecast skill varies with the solar cycle. The second half of the study shows how persistence can provide a useful benchmark for more sophisticated forecast schemes, namely physics-based numerical models. Point-by-point assessment methods, such as correlation and mean-square error, find persistence skill comparable to numerical models during solar minimum, despite the 27 day lead time of persistence forecasts, versus 2–5 days for numerical schemes. At solar maximum, however, the dynamic nature of the corona means 27 day persistence is no longer a good approximation and skill scores suggest persistence is out-performed by numerical models for almost all solar wind parameters. But point-by-point assessment techniques are not always a reliable indicator of usefulness as a forecast tool. An event-based assessment method, which focusses key solar wind structures, finds persistence to be the most valuable forecast throughout the solar cycle. This reiterates the fact that the means of assessing the “best” forecast model must be specifically tailored to its intended use
Recommended from our members
Probabilistic solar wind and geomagnetic forecasting using an analogue ensemble or "Similar Day" approach
Effective space-weather prediction and mitigation requires accurate forecasting of near-Earth solar-wind conditions. Numerical magnetohydrodynamic models of the solar wind, driven by remote solar observations, are gaining skill at forecasting the large-scale solar-wind features that give rise to near-Earth variations over days and weeks. There remains a need for accurate short-term (hours to days) solar-wind forecasts, however. In this study we investigate the analogue ensemble (AnEn), or “similar day”, approach that was developed for atmospheric weather forecasting. The central premise of the AnEn is that past variations that are analogous or similar to current conditions can be used to provide a good estimate of future variations. By considering an ensemble of past analogues, the AnEn forecast is inherently probabilistic and provides a measure of the forecast uncertainty. We show that forecasts of solar-wind speed can be improved by considering both speed and density when determining past analogues, whereas forecasts of the out-of-ecliptic magnetic field [ BNBN ] are improved by also considering the in-ecliptic magnetic-field components. In general, the best forecasts are found by considering only the previous 6 – 12 hours of observations. Using these parameters, the AnEn provides a valuable probabilistic forecast for solar-wind speed, density, and in-ecliptic magnetic field over lead times from a few hours to around four days. For BNBN , which is central to space-weather disturbance, the AnEn only provides a valuable forecast out to around six to seven hours. As the inherent predictability of this parameter is low, this is still likely a marked improvement over other forecast methods. We also investigate the use of the AnEn in forecasting geomagnetic indices Dst and Kp. The AnEn provides a valuable probabilistic forecast of both indices out to around four days. We outline a number of future improvements to AnEn forecasts of near-Earth solar-wind and geomagnetic conditions
Axisymmetric Waves in Layered Anisotropic Fibers and Composites
The complicated morphology of the new generation of advanced fibrous composites gave further impetus to the study of the interaction of ultrasonic waves with multilayered concentric cylindrical systems. Typically, the fiber consists of a cylindrical core embedded in a cladding region followed by a distinct interface zone separating the fiber system from the host (matrix) region. In addition, the cladding region itself often consists of subregions which can be identified as distinct layers. Each individual layer can posses certain degree of microscopic anisotropy adding to the macroscopic anisotropy produced by the presence of layering and imperfect interfaces. Relatively few efforts have been spent upon the study of free and immersed homogeneous anisotropic rods [1–5]. These works are insufficient to model real situations encountered in materials characterization of advanced fibrous composites. In order to better model advanced fibrous composites at least three major effects need to be accounted for. These are the inhomogeneous nature of the structure as reflected in its multilayering, the inherent microscopic anisotropy of some of the constituents and finally the quality of the interfaces. In this paper we briefly describe a unified analytical treatment of wave propagation along the fiber direction of multilayered coaxial fibrous systems embedded in a host material. A more detailed discussion of this general treatment will be presented elsewhere [6]. Figure 1 shows typical geometric situations including (a) a single multilayered fiber, (b) a single multilayered fiber either immersed in an infinite fluid or embedded in an infinite solid, and an infinite composite material with periodically distributed multilayered fiber
The InterHourly-Variability (IHV) Index of Geomagnetic Activity and its Use in Deriving the Long-term Variation of Solar Wind Speed
We describe the derivation of the InterHourly Variability (IHV) index of
geomagnetic activity. The IHV-index for a geomagnetic element is mechanically
derived from hourly values as the sum of the unsigned differences between
adjacent hours over a seven-hour interval centered on local midnight. The index
is derived separately for stations in both hemispheres within six longitude
sectors using only local night hours. It is intended as a long-term index.
Available data allows derivation of the index back well into the 19th century.
On a time scale of a 27-day Bartels rotation, IHV averages for stations with
corrected geomagnetic latitude less than 55 degrees are strongly correlated
with midlatitude range indices. Assuming a constant calibration of the aa-index
we find that observed yearly values of aa before the year 1957 are 2.9 nT too
small compared to values calculated from IHV using the regression constants
based on 1980-2004. We interpret this discrepancy as an indication that the
calibration of the aa index is in error before 1957. There is no such problem
with the ap index. Rotation averages of IHV are also strongly correlated with
solar wind parameters (BV^2). On a time scale of a year combining the IHV-index
and the recently-developed Inter-Diurnal Variability (IDV) index (giving B)
allows determination of solar wind speed, V, from 1890-present. Over the
~120-year series, the yearly mean solar wind speed varied from a low of 303
km/s in 1902 to a high value of 545 km/s in 2003. The calculated yearly values
of the product BV using B and V separately derived from IDV and IHV agree
quantitatively with (completely independent) BV derived from the amplitude of
the diurnal variation of the H component in the polar caps since 1926 and
sporadically beyond
Asteroids. From Observations to Models
We will discuss some specific applications to the rotation state and the
shapes of moderately large asteroids, and techniques of observations putting
some emphasis on the HST/FGS instrument.Comment: to appear in LNP; 28pages; written in 2003; Winter School "Dynamique
des Corps Celestes Non Ponctuels et des Anneaux", Lanslevillard (FRANCE
- …
