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Abstract Effective space-weather prediction and mitigation requires accurate forecasting
of near-Earth solar-wind conditions. Numerical magnetohydrodynamic models of the solar
wind, driven by remote solar observations, are gaining skill at forecasting the large-scale
solar-wind features that give rise to near-Earth variations over days and weeks. There re-
mains a need for accurate short-term (hours to days) solar-wind forecasts, however. In this
study we investigate the analogue ensemble (AnEn), or “similar day”, approach that was
developed for atmospheric weather forecasting. The central premise of the AnEn is that
past variations that are analogous or similar to current conditions can be used to provide a
good estimate of future variations. By considering an ensemble of past analogues, the AnEn
forecast is inherently probabilistic and provides a measure of the forecast uncertainty. We
show that forecasts of solar-wind speed can be improved by considering both speed and
density when determining past analogues, whereas forecasts of the out-of-ecliptic magnetic
field [BN] are improved by also considering the in-ecliptic magnetic-field components. In
general, the best forecasts are found by considering only the previous 6 – 12 hours of ob-
servations. Using these parameters, the AnEn provides a valuable probabilistic forecast for
solar-wind speed, density, and in-ecliptic magnetic field over lead times from a few hours
to around four days. For BN, which is central to space-weather disturbance, the AnEn only
provides a valuable forecast out to around six to seven hours. As the inherent predictability
of this parameter is low, this is still likely a marked improvement over other forecast meth-
ods. We also investigate the use of the AnEn in forecasting geomagnetic indices Dst and Kp.
The AnEn provides a valuable probabilistic forecast of both indices out to around four days.
We outline a number of future improvements to AnEn forecasts of near-Earth solar-wind
and geomagnetic conditions.
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1. Introduction

The purpose of space-weather forecasting is, ultimately, to improve decision-making capa-
bility for a range of end users, including (but not limited to) power companies, satellite op-
erators, the aviation industry, communication companies, and human-spaceflight controllers
(Hapgood, 2011; Cannon et al., 2013). While accuracy is central to any useful forecast, dif-
ferent aspects of the forecast, e.g. ratio of false alarms to missed events, reliability of “all
clear” forecasts, forecast lead time, correct event occurrence statistics, and ability to predict
extremes, will be more or less important for different operational applications.

Physics-based, long lead-time (i.e. greater than approximately 40 minutes, the nominal
L1-to-Earth solar-wind propagation time) space-weather forecasting requires prediction of
near-Earth solar-wind conditions on the basis of remote solar or heliospheric observations.
This is typically provided by deterministic numerical magnetohydrodynamic (MHD) mod-
els (e.g. Riley, Linker, and Mikic, 2001; Odstrcil et al., 2004; Tóth et al., 2005). Ensembles
of numerical solar-wind MHD models, using multiple runs of the numerical model with
stochastic perturbations to the initial conditions (e.g. Cash et al., 2015), are beginning to be
used operationally, although the number of ensemble members is limited by computational
power, and the range of perturbations is poorly constrained by observations. More funda-
mentally, it is not clear that the probability density function (PDF) generated from the spread
in ensemble members accurately represents the uncertainty in the forecast. In particular, if
the model has any systematic bias, such as an under-prediction of the heliospheric-magnetic-
field (HMF) intensity [B], then the ensemble PDF of B will also be skewed to low values
and not represent the true likelihood of a given value of B .

Similar issues are faced by terrestrial atmospheric-weather forecasting. Before the advent
of numerical weather prediction (NWP) models, and especially the forecast skill advance
that came with the advent of ensemble NWP (e.g. Leutbecher and Palmer, 2008 and refer-
ences therein), “similar day” or analogue forecasting (AF) methods were widely used. The
basic premise is that if close matches (or analogues) to the current atmospheric conditions
can be identified in historical observations, these analogues will provide a good estimate
of conditions in the future (e.g. van den Dool, 1989 and references therein). By consider-
ing an “ensemble” of past analogues, a probabilistic forecast for future conditions can be
constructed. As this is the result of observations, it is inherently bias-free. AF is actually
of limited use for terrestrial weather forecasting as the atmospheric system is inherently
chaotic, and so it is a poor assumption that two atmospheric states that are initially close
will remain so in the future (Lorenz, 1969). For solar-wind forecasting, which is far more
of a system “driven” by boundary conditions, the prospects are more promising, as we shall
demonstrate.

AF has since found a new role within atmospheric forecasting (Delle Monache et al.,
2013). Historical NWP forecasts are analysed for times analogous to the current forecast
state. These times are used to produce an ensemble of the observed conditions. This serves
two purposes: Firstly, it corrects for any bias in the NWP forecast. Secondly, with little ad-
ditional computational cost or need to specify initial condition perturbations, it transforms
a single deterministic forecast into probabilistic forecast with an accurate bias-free assess-
ment of the uncertainty in the forecast. This approach will undoubtedly be useful for solar-
wind forecasting, once a long enough (e.g. decades) catalogue of historical MHD solar-wind
forecasts has been amassed. At present, we investigate the use of a purely observation-based
analogue ensemble (AnEn) for statistical solar-wind forecasting, rather than in conjunction
with a model.

The concept of analogue or “similar day” forecasting has previously been investigated
for specific space-weather uses, with pattern matching within discrete solar-wind events,
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specifically magnetic clouds (Chen, Cargill, and Palmadesso, 1997) and high-speed streams
(Bussy-Virat and Ridley, 2016). More recently, Riley et al. (2017) have demonstrated the
potential of analogue forecasts through simple pattern matching for various solar-wind con-
ditions. Considering solar-wind parameters independently, and fixing the number of ana-
logue periods at 50 and the period over which they are determined at 24 hours, they showed
significant forecast skill for a few days lead time in solar-wind speed, density, and temper-
ature, but only a few hours for the out-of-ecliptic magnetic-field component. Nonlinear ap-
proaches, particularly neural networks, which implicitly involve analogue-forecasting ideas,
have been widely used for predicting Kp, one of the most widely used indices of geomag-
netic disturbance (Detman and Joselyn, 1999; Boberg, Wintoft, and Lundstedt, 2000; Wing
et al., 2005). These are typically used to assess the recent solar-wind conditions and give Kp
forecasts with a lead time of about three hours (e.g. Solares et al., 2016). While not directly
an analogue forecast as such, explicit decomposition of sunspot, irradiance, and geomag-
netic time series into the frequency domain has also been shown to have predictive power
over short (e.g. one- to seven-day) forecast lead times (Reikard, 2016).

In this study, we build on the results of Riley et al. (2017) to investigate the purely
AnEn approach for continuous probabilistic solar-wind and geomagnetic forecasting. We
perform a sensitivity analysis of the AnEn forecast skill to the choice of the time period
and parameters over which the analogy is computed, as well as the number of analogous
periods used to produce the ensemble. We then quantify the potential economic value of the
probabilistic AnEn forecasts relative to persistence and climatology.

2. Producing an Ensemble Analogue (AnEn) for the Solar Wind

To produce a solar-wind AnEn forecast, we use the OMNI series of near-Earth in-situ space-
craft observations (King and Papitashvili, 2005) at one-hour resolution. The inclination an-
gle of the Ecliptic plane to the solar-rotation direction means that there are entirely geometric
trends in the magnetic-field and solar-wind flow vectors. In geocentric-solar-ecliptic (GSE)
coordinates, predictability is thus present in the y- and z-components of the solar-wind flow
and magnetic-field time series that is unrelated to solar-wind structures or variability, but
results purely from the variation in the GSE coordinate system over the Earth’s orbit (e.g.
Rosenberg and Coleman, 1969; Russell and McPherron, 1973). In this study, data are con-
sidered in the heliographic radial-tangential-normal (RTN) coordinate system, where the
normal is along the solar-rotation axis and the tangential is to the solar-rotation direction.
The RTN coordinate system removes the orbital or geometric trends effects in the near-Earth
solar-wind parameters and enables the predictability of solar-wind structures to be studied
in isolation. For space-weather forecasting purposes, the radial solar-wind flow speed [VR]
and the component of the HMF normal to the solar-rotation plane [BN] are the critical pa-
rameters, as they are the primary contributors to the dawn-to-dusk electric field that controls
reconnection with the magnetospheric field (Dungey, 1961). Owing to the inclination of the
Earth’s magnetosphere and orbital plane to the solar-rotation plane, the HMF component
along the solar-rotation direction [BT] also leads to a magnetic field anti-parallel to the nose
of the magnetosphere, in a manner that varies systematically with both day of year and time
of day (Lockwood et al., 2016). The solar-wind density [NP] also affects the compression
of the magnetosphere and hence the efficiency of the magnetic coupling between the he-
liospheric and magnetospheric magnetic fields. These are the four solar-wind parameters
investigated in this study.



69 Page 4 of 16 M.J. Owens et al.

Using OMNI data in RTN coordinates, the AnEn methodology is first demonstrated for
the simplest case: forecasting a single solar-wind parameter [P ] in near-Earth space from the
current time [t0] out to a forecast lead-time [t0 + TF], where TF is the length of the forecast
window. The similarity of recent solar-wind conditions to historic observations is quantified
using the mean-square error (MSE) between P during the training window, t0 − TT to t0
(where TT is the length of the training window), and P at all previously observed intervals,
i.e. tn − TT to tn, for all values of tn between the start of OMNI data and t0. Obviously, for
true forecasting purposes, only training intervals before t0 will be available. For solar-wind
AnEn development, however, the database can be enlarged by using intervals both before
and after t0, although the forecast window itself is obviously excluded. The analogues are the
NEN periods with the lowest MSE values. The forecast is then assembled from the ensemble
of the NEN time series over the period tn to tn + TF.

An example is shown in Figure 1 for the radial solar-wind speed [VR] variation on 11
June 2003. The training and forecast window lengths, TT and TF, are both 24 hours. The
green line shows the observed variation, which shows a fairly steady decline in both the
training and forecast windows. The thin grey lines in the top panel show the ten closest
analogues in the training window, drawn from the entire OMNI dataset. There is a great
deal of spread in this ten-member ensemble during the forecast window, but the median,
shown as the thick black line, does show a downward variation, as observed. This variation
would not be obtained by assuming, e.g. persistence (shown in red) of the last observed
value (approximately 600 km s−1) over the forecast window. Similarly, assuming the cli-
matological value of VR, taken to be the mean over the whole OMNI dataset (433 km s−1,
shown in blue), would provide a poor forecast. The bottom panel shows the same analysis
for NEN = 100, with the grey shaded bands containing 67%, 90%, and 95% of the ensemble
members. Such assessments of uncertainty are fully nonparametric and do not assume that
the data are normally distributed.

Note that the top panel of Figure 1 shows a number of discontinuous lines, which are the
result of data gaps in the forecast windows of individual analogues. As the forecast median
and confidence intervals are calculated independently at each time step, data gaps are simply
excluded. This means that when a large number of analogues contain data gaps at a given
forecast time, the reliability of the median reduces and the width of the confidence intervals
expands. We limit this effect by requiring at least 75% data coverage in both the training
and forecast windows.

The quality of the forecast obtained in this manner depends critically on a number of pa-
rameters, particularly TT, NEN, and the choice of training parameter(s). In the initial study of
Riley et al. (2017), TT was fixed at 24 hours, NEN was fixed at 50, and the closest analogues
were determined only using the parameter being forecast. In order to assess the optimum
values for solar-wind forecasting, we test a range of values and parameters for the period
1 January 2003 to 31 June 2003. While there is nothing particularly special about this pe-
riod, it does contain some prolonged periods of fast and slow wind, as well as a number
of interplanetary coronal mass ejections, testing the AnEn over a wide range of conditions.
A longer interval is not used for computational reasons. It is not possible to fully explore
the parameter space in a systematic fashion for the same reason. Instead, we explore each
variable in turn and consider only the root-mean square error (RMSE) between observations
and ensemble median. Note that by considering only the ensemble median, this method does
not fully exploit the power of a probabilistic forecast, discussed further below. At 0:00 UT
for each day in the six-month period, we compute the AnEn median forecast over the next
24 hours and compare that with observations (the analogue periods, however, can begin at
any UT). Thus the RMSE is computed for a range of forecast lead times from 1 to 24 hours.
Performance at each lead time is considered below.
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Figure 1 An example of an analogue ensemble (AnEn) for radial solar-wind speed [VR]. The forecast is
made at t0 = 0:00 UT on 11 June 2003. The training window length [TT] and the forecast window length
[TF] are both 24 hours. The solid green line shows the observed variation. The thin grey lines in the top panel
show the ten closest analogues in the whole OMNI dataset to the observed variation in the training window.
The thick black line shows the median of this ten-member ensemble. The grey shaded regions in the bottom
panel show the bands containing 68%, 90%, and 95% of a 100-member ensemble. The red and blue lines
show the persistence and climatological forecasts, respectively.

Figure 2 shows the RMSE error in the AnEn median forecast over the six-month interval
in early 2003 (although the training analogues are drawn from the whole OMNI dataset).
Figure 2a is the VR forecast using analogues determined using only VR data. A range of
training window lengths, from 1 hour to 27 days, and a range of number of ensemble mem-
bers, from 10 to 100, are considered. For high values of TT (> one day), the RMSE between
observations and the AnEn median is generally very high. For high TT, RMSE also increases
with NEN, as the number of suitable analogues becomes insufficient. A minimum RMSE of
64.8 km s−1 is found for NEN = 100 and TT = 6 hours (higher values of NEN than shown
in Figure 2, specifically, 150, 200, and 300, resulted in larger RMSE at all TT). See also
Table 1. For comparison, the solid red lines in Figure 2a and b show the best persistence
forecast for VR, namely that VR over the next 24 hours is equal to the value at 0:00 UT.
The high autocorrelation in VR means that this is an extremely good forecast in terms of
RMSE, at least over short lead times (e.g. averaged over forecast lead times from 1 to 24
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Figure 2 The RMSE between observations and the AnEn median over the period 1 January 2003 to 1 July
2003 for a range of training window lengths and number of ensemble members. Panels a and b show the
RMSE in the median VR forecast using analogues determined from (a) VR only and (b) VR and NP. Solid,
dashed, dot–dashed, and dotted lines show NEN = 100, 75, 50, and 10, respectively. The solid red lines show
the best persistence forecast. Panels c and d show the RMSE in the BN forecast using analogues determined
from (c) BN only and (d) BN and BT. The solid blue lines show the climatological forecast.

hours, it outperforms all current numerical solar-wind models (Owens et al., 2008), as well
as 27-day persistence (Owens et al., 2013)), although that does not necessarily make it a
useful forecast for operational decision making. For this six-month test period, persistence
results in an RMSE of 63.2 km s−1, lower than any of the AnEn forecasts considered in Fig-
ure 2a. The “best” AnEn parameters result in an RMSE of 64.8 km s−1, this suggest that at
best the AnEn approaches persistence. Conversely, a climatological forecast of VR (i.e. that
VR = 433 km s−1 at all times) is very poor, resulting in an RMSE of 190 km s−1 (hence it is
not shown in the figure).
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Table 1 Summary of the training parameters that give the lowest RMSE over the interval 1 January 2003 – 1
July 2003 for the AnEn median of various forecast parameters.

Forecast
parameter

Best training
parameter(s)

Best NEN Best
[hours]

TT AnEn
median

RMSE

Persistence Climatology

BT BT 100 6 3.42 nT 4.19 nT 4.50 nT

BN BT, BN 100 6 2.92 nT 4.24 nT 2.94 nT

VR VR, NP 100 6 61.6 km s−1 63.2 km s−1 190 km s−1

NP VR, NP 100 12 2.79 cm−3 4.22 cm−3 3.49 cm−3

Of course, there is no reason why the analogue periods have to be selected solely on the
basis of the forecast parameter (as in the VR forecast discussed above). Figure 2b shows the
RMSE in the AnEn median VR forecast using analogue periods determined by both VR and
NP in the training window. In order to combine RMSE in different solar-wind parameters
measured in different physical units, it is necessary to first convert them into a normalised
quantity. To achieve this, the cumulative distribution functions (CDFs) of VR and NP are
computed over the whole OMNI dataset. The time series of VR and NP are then converted
into rank within their respective CDFs. RMSE in the training window is then calculated on
the basis of CDF rank. The VR and NP rank RMSEs are then multiplied together and the
analogues are taken to be the periods with the lowest values.

Figure 2b shows that for NEN > 10, the AnEn median forecast of VR using analogues
determined by both VR and NP performs better than persistence at TT = 6 hours. The lowest
RMSE is for NEN = 100 and TT = 6 hours, resulting in an RMSE of 61.6 km s−1. For the
AnEn forecast of NP (not shown), there is a similar situation: over the period January – June
2003, a persistence forecast of NP gives an RMSE of 4.22 cm−3. A climatological forecast
of NP = 6.74 cm−3 gives an RMSE of 3.49 cm−3. The best AnEn median forecast for NP

trained on just NP is TT = 12 hours and NEN = 100, giving an RMSE of 2.88 cm−3. Training
the AnEn on both VR and NP, however, gives an RMSE = 2.79 cm−3 for TT = 12 hours and
NEN = 100.

Figure 2c shows the RMSE in BN using analogues determined by BN. The dashed line
shows the climatological forecast, i.e. BN = 0, which results in an RMSE of 2.94 nT, better
than the current numerical and 27-day persistence forecasts, although it is likely to be of little
value as a forecast for operators. (The lack of autocorrelation in the BN time series means
that the 1- to 24-hour persistence forecasts of BN are poor, giving an RMSE of 4.09 nT.
Hence it is not shown in the figure.) For increasing NEN and TT, the AnEn forecast tends
towards climatology. For large NEN (i.e. >75), the AnEn forecast using TT between 3 and
12 hours has an RMSE that is just lower than persistence. Figure 2d shows the same results,
but for analogues determined on the basis of both BN and BT. For NEN > 50 and TT around
6 hours, the median AnEn forecast is improved slightly.

The optimum AnEn parameters and the resulting RMSE are summarised in Table 1. Ob-
viously, it is also necessary to quantify whether the differences in RMSE between the various
forecast types actually lead to a meaningful increase in an operator’s ability to successfully
take action. The utility of a forecast depends greatly on the particular application. Thus in
the probabilistic AnEn section, we also compute the “potential economic value” over a range
of operational scenarios.
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Figure 3 Average forecast RMSE over 1996 – 2015 as a function of forecast lead time for (a) VR, (b) NP,
(c) BN, and (d) BT. Black, red, and blue lines show the AnEn, persistence, and climatological forecasts,
respectively.

3. Performance of the Deterministic Solar-Wind AnEn over 1996 – 2014

We now investigate the performance of the AnEn using the parameters in Table 1 over a
much longer period, covering 1 January 1996 to 1 January 2015. This 19-year interval almost
spans the period of near-complete OMNI data coverage. No attempt is made to remove or
isolate the interplanetary manifestations of coronal mass ejections, which are treated in the
exact same manner as any other solar-wind interval. Forecasts (be it AnEn, persistence, or
climatological) are made at 0:00 UT for every day in this interval and the average RMSE
computed for a range of lead times, from 1 hour to 30 days.

Figure 3 shows the average RMSE as a function of forecast lead time. Panels a, b, c,
and d show forecasts of VR, NP, BN, and BT, respectively. The climatological forecasts
(blue) assume that the mean values of the forecast parameters, computed over the entire
OMNI dataset, persist at all times. Thus the average RMSE for climatology is approximately
constant over all lead times, with a value of around 80 km s−1 for VR, 3.5 cm−3 for NP, 1.9 nT
for BN, and 3 nT for BT. The persistence forecasts, in red, assume that the hourly values of
the forecast parameters at 0:00 UT persist over the forecast window. For all parameters, the
average RMSE for persistence is small initially (as the current value of, e.g., VR is closely
correlated with the value one hour previously), but grows rapidly with increased forecast
lead time. For VR, NP, and BT, persistence out-performs climatology for forecast lead times
up to 15 – 30 hours. For BN, however, the RMSE for persistence is higher than climatology
even at a lead time of two hours, demonstrating the short autocorrelation time in the BN time
series and the inherent difficulty in BN prediction (e.g. Lockwood et al., 2016 and references
therein).
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The AnEn forecasts, in black, use the parameters outlined in Table 1. The RMSE is
computed between the AnEn median and observed time series. For VR and NP, persistence
outperforms (i.e. provides a forecast with lower RMSE) the AnEn median for very short
lead times, <5 and <3 hours, respectively. For longer lead times, the AnEn median is
better than both persistence and climatology. The RMSE in the AnEn grows with increasing
forecast lead time, but at a much slower rate than persistence. As for persistence, the AnEn
RMSE plateaus at a forecast lead-time of around 100 hours, but the AnEn reaches a value
lower than the climatological RMSE. This is due to the climatology being calculated over
the whole OMNI dataset, which results in a different mean value than over the 1996 – 2015
test period, primarily as a result of solar-cycle sampling. The AnEn appears to be effectively
selecting a more appropriate climatology. There is a small drop in the RMSE of the AnEn
median and persistence forecasts of VR and NP at lead times of approximately 27 days
(approximately 650 hours), which is due to the recurrence of solar-wind structures with
solar rotation (e.g. Chree and Stagg, 1928; Owens et al., 2013). For BN and BT forecasts,
the AnEn median beats persistence and climatology for all lead times, although the AnEn
median essentially regresses towards climatology for lead times of around 100 hours for BT

and 10 hours for BN. AnEn and persistence show the 27-day recurrence feature for forecasts
of BT, but not BN.

4. Testing the Probabilistic AnEn

Up to this point, only the AnEn median has been considered, essentially using the AnEn
as a deterministic forecast. In order to assess the performance of the probabilistic AnEn
forecast relative to the performance of deterministic forecasts such as persistence and cli-
matology, we compute the potential economic benefit of the forecasts (Murphy, 1977;
Richardson, 2000). This metric is best understood by an example (Owens et al., 2014):
a spacecraft will suffer some kind of failure if a particular solar-wind parameter exceeds
a threshold X. The expense of this failure is referred to as the loss [L]. Mitigating action,
such as putting the spacecraft into safe mode, can be taken to protect the spacecraft, but this
action also has a cost [C]. Thus, in the absence of a usable forecast, the spacecraft should
always be in safe mode if the climatological probability of exceeding X is greater than C/L.
The total expense of operating the spacecraft is then simply NC, where N is the number of
time steps considered. If, on the other hand, the climatological probability of exceeding X

is lower than C/L, the spacecraft should operate continuously and the total expense will be
L multiplied by the sum of all of the times X was actually observed to be exceeded. The ex-
pense can be similarly computed for acting on a deterministic forecast of X being exceeded.
For a probabilistic forecast, mitigating action should only be taken when the forecast prob-
ability of exceeding X is forecast to be greater than C/L. Potential economic value (PEV)
compares the expense of acting on a given forecast with both climatology and a perfect de-
terministic forecast (see Equation (1) of Owens et al., 2014), with 100 indicating a perfect
forecast and values below 0 indicating the forecast is less effective than climatology.

Figure 4 shows the PEV of persistence (blue dashed) and AnEn (red) forecasts for a
range of solar-wind parameter thresholds and cost/loss ratios. PEV is computed over the
whole 19-year interval. The rows show from top to bottom VR, NP, and BT forecasts with a
24-hour lead time, and BN forecasts with a 3-hour lead time (BN with a 24-hour lead time
has PEV < 0 for all cost/loss ratios, thresholds and across the AnEn and persistence, and so
it is not shown). The columns show from left to right increasing thresholds for mitigating
action, namely the 50th, 75th, and 90th percentiles of the forecast parameters. For VR, this
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Figure 4 The potential economic value of a forecast (relative to climatology) for a range of cost/loss ratios,
where cost is the expense of taking mitigating action and loss is the expense of not taking action during
adverse space-weather conditions. Red lines show the AnEn, blue dashed lines show persistence. The rows
show from top to bottom forecasts for VR, NP, and BT with a 24-hour lead time, and BN with a 3-hour lead
time. The columns show from left to right an increasing threshold for taking action, namely the 50th, 75th,
and 90th percentile of the forecast parameter.

means thresholds of 408, 482, and 584 km s−1. For BN, negative percentiles and thresholds
are considered, i.e. below 0, −1.35, and −2.93 nT.

It can be seen that the AnEn VR forecasts are “valuable” (in providing a more actionable
forecast than climatology and thus having a potential economic value greater than zero) at
nearly all cost/loss ratios and mitigation thresholds. The AnEn value is also greater than
persistence at all cost/loss ratios and thresholds. For NP, the AnEn provides a more valu-
able forecast than persistence for low and medium thresholds, but a poorer forecast for high
thresholds. The 24-hour lead time AnEn forecast of BT provides an improvement over per-
sistence over most cost/loss ratios, although this advantage decreases as the threshold for
action is increased. For BN, even at 3-hour lead times, the value of the forecasts is small.
The AnEn forecast, however, does show a value greater than climatology and persistence
over a wide range of cost/loss ratios for moderate and large negative BN excursions.
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Figure 5 The potential economic value of solar-wind speed forecasts (relative to climatology) for a range
of cost/loss ratios, where cost is the expense of taking mitigating action and loss is the expense of not tak-
ing action during adverse space-weather conditions. In the same format as Figure 4. The top panels show
solar-maximum periods, the bottom panels solar-minimum periods. The rows show from left to right action
thresholds at the 50th, 75th, and 90th percentiles of the solar-maximum and -minimum periods.

A full investigation of the performance of the AnEn over the solar cycle would require
tuning the AnEn parameters (e.g. NEN and TT) at each point of the solar cycle. As a pre-
liminary investigation, here we simply use the optimum values determined over the whole
dataset (as listed in Table 1) to assess the performance in solar maximum and solar mini-
mum, distinguished using a monthly smoothed sunspot-number threshold of 50, which ap-
proximately bisects the dataset. Results for the solar-wind speed [VR] are shown in Figure 5.
The performance of the AnEn (and persistence) is broadly similar between the two periods,
but, somewhat counterintuitively, the AnEn appears to perform marginally better during so-
lar maximum. This may be the result of reduced VR variability at this time (note the reduced
range of the percentiles in solar maximum compared with solar minimum).

5. Geomagnetic Forecasting

We now apply the AnEn methodology to forecasting of geomagnetic parameters. We con-
sider the two most widely used geomagnetic indices: Dst and Kp. Dst is obtained from
equatorial magnetometers and is therefore primarily a measure of the ring-current intensity,
with high negative values that are indicative of an on-going geomagnetic storm (Sugiura,
1964). Kp is a measure of the range of magnetic variability observed by mid-latitude sta-
tions, scaled between 0 and 9, with larger numbers indicating magnetically disturbed periods
(Bartels, Heck, and Johnston, 1939).

Figure 6 shows the average forecast RMSE in Dst and Kp over 1996 – 2015 as a function
of forecast lead time. As for Figure 3, the AnEn median is shown in black, persistence in
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Figure 6 Average forecast RMSE over 1996 – 2015 as a function of forecast lead time for (a) Kp and (b) Dst.
Black, red, and blue lines show the AnEn, persistence, and climatological forecasts, respectively.

red, and climatology in blue. For both AnEn forecasts, the training window is 6 hours and
the number of ensemble members is 100. The analogues are determined purely from the
forecast parameters (i.e. just Dst for the Dst forecast and just Kp for the Kp forecast). When
we use the current AnEn methodology, the inclusion of BN and/or VR as training parameters
is found to produce little to no improvement in the forecast RMSE.

All forecasts show a strong diurnal variation in RMSE, resulting from the tilt of the
Earth’s rotational axis relative to the Ecliptic plane, which leads to a diurnal variation in the
coupling efficiency between the heliospheric and magnetospheric magnetic fields (Siscoe
and Crooker, 1996). Consequently, the best forecast (i.e. lowest RMSE) within a given 24-
hour range of lead times occurs at the same time of day as the time the forecast is made
(i.e. 0:00 UT in this case). For both Dst and Kp, persistence provides a better forecast than
climatology out to around 24 hours lead time. The AnEn median provides a lower RMSE at
all lead times beyond one hour and continues to provide a useful forecast out to around four
days. In fact, the ability of the AnEn to select an appropriate climatology means it provides
a better forecast than a simple climatological means for all lead times. Both persistence and
the AnEn median show a decrease in forecast RMSE for forecast lead times of around 27
days, as expected.

The performance of the probabilistic AnEn is assessed in Figure 7. The potential eco-
nomic value of acting on the 24-hour lead-time AnEn and persistence forecasts of Dst and
Kp are shown in the top and bottom rows, respectively. The AnEn forecast is comparable to,
or better than, persistence for all thresholds and cost/loss ratios for both Dst and Kp, demon-
strating the value of this approach for forecasting geomagnetic disturbances. The level of
improvement provided by the AnEn over persistence, however, is a strong function of the
cost/loss ratio, which is fixed by the application. So the benefit provided by the use of the
AnEn will be strongly application dependent. These results also confirm that the AnEn pro-
vides a useful measure of the forecast uncertainty, as well as the most probable value. We
also note that relative to climatology, Dst appears to be far more predictable via both the
AnEn and persistence than Kp.
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Figure 7 The potential economic value of a forecast (relative to climatology) for a range of cost/loss ratios,
where cost is the expense of taking mitigating action and loss is the expense of not taking action during
adverse space-weather conditions. Red lines show the AnEn, blue dashed lines show persistence. The top row
shows the Dst forecast, the bottom row the Kp forecast. The columns show from left to right an increasing
threshold for taking action, namely the 50th, 75th, and 90th percentile of the forecast parameter.

6. Summary and Conclusions

We have investigated the use of an analogue ensemble (AnEn), often referred to as a “simi-
lar day” approach, for probabilistic solar-wind and geomagnetic forecasting. This forecast is
constructed by determining a number of periods in the historical data that are “analogous” to
the current conditions. It is then assumed that future variations will follow the same trends
as these analogues. If an ensemble of analogues is used, the forecast is inherently proba-
bilistic. As outlined by Riley et al. (2017), the AnEn approach is very promising for short
or medium lead-time solar-wind and geomagnetic forecasting (hours to days) and thus may
serve as a complementary approach to the longer lead-time (days to weeks) physics-based
magnetohydrodynamic models.

Forecasts for four solar-wind parameters were considered, chosen for their geomagnetic
relevance. They are the solar-wind radial speed [VR], the solar-wind density [NP], the merid-
ional magnetic-field component in heliographic coordinates [BN] (which is approximately
the southward magnetic field [BZ] in geocentric-solar-ecliptic, GSE, coordinates), and the
tangential magnetic field [BT] (which is approximately BY in GSE coordinates).

A six-month interval of solar-wind data from the first half of 2003, including both ambi-
ent solar wind and transient structures from coronal mass ejections, was used to determine
the optimum AnEn parameters. One of the most critical parameters is the length of the
“training window” over which historical analogues are compared to current solar-wind con-
ditions. In general, we found that around 6 – 12 hours was the optimum value in terms of
minimising the root mean-square error (RMSE) of the AnEn median. Increasing the length
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of the training window beyond around 24 hours generally increased the RMSE of the result-
ing forecast, as it reduces the number of suitable analogues in the historical dataset. As the
suitability of analogues decreases, the ensemble median forecast essentially reduces to cli-
matology. A longer training window also decreases the relative weighting of the most recent
observations, which may produce less suitable analogues for future variations. The AnEn
RMSE is also found to increase if the number of analogues in the ensemble is increased
above around 100, as insufficient analogues are present in the currently available historical
dataset (around 60 years of near-Earth spacecraft observations). For solar-wind forecasting,
the determination of the analogue periods was found to benefit from additional contextual
information. For example, the AnEn VR forecast is improved when both VR and NP data
are considered in the training window, while the BN forecast improves when both BN and
BT are considered. There is a trade-off, however, with increased specificity meaning that
the number of suitable past analogues decreases and emphasis on the forecast parameter is
reduced.

Using the optimal parameters, the AnEn forecasts were subsequently tested over a 19-
year period of nearly complete solar-wind observational coverage, 1996 – 2015. As most
common space-weather metrics necessitate a deterministic forecast, it is instructive to first
reduce the AnEn to a deterministic forecast by considering only the median value. At very
short forecast lead times (one to six hours), the high autocorrelation in the solar-wind plasma
parameters means that a persistence forecast of VR and NP is more accurate than the AnEn
median or climatology. That advantage is rapidly lost with increasing lead time, with the
AnEn median providing a much lower RMSE than persistence for lead times longer than a
few hours. With increasing lead time, the RMSE of the AnEn grows, although at a slower
rate than persistence. For lead times longer than around 100 hours (approximately four
days), the RMSE of the AnEn forecast of VR and NP plateaus, but to a value below cli-
matology. This is due to the AnEn effectively selecting a more suitable “climatology” for
the forecast window than is given by simply averaging over the whole dataset, which can
skew the mean towards, e.g., the wrong phase of the solar cycle.

Using the cost/loss method of determining the effectiveness of a probabilistic forecast,
the 24-hour lead time AnEn forecast was shown to generally outperform persistence. For
BN, however, there is little value in the AnEn (or persistence) 24-hour lead-time forecasts
relative to climatology (i.e. BN = 0). When the lead time is reduced to three hours, however,
the AnEn forecast has value, particularly for the extreme negative values that are of prime
interest to space-weather forecasting.

Finally, we considered the application of the AnEn to geomagnetic forecasting. The two
most commonly used geomagnetic indices, Dst and Kp, were considered. The AnEn ap-
proach proved better than persistence for both indices over all forecast lead times and all
cost/loss ratios.

7. Future Improvements

The solar-wind AnEn forecasts outlined in this study are by no means the best possible AnEn
forecasts. Indeed, there should not be considered to be a single solar-wind AnEn, as forecasts
should be optimised for the required operational use. Some may emphasise a particular
forecast lead time, some a more accurate “best” prediction, some a more accurate assessment
of the forecast uncertainty, etc. With this in mind, we outline a number of possible future
improvements to solar-wind AnEn forecasting:
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– A more systematic exploration of the AnEn parameter space is required, ideally using a
longer training dataset than the six months considered here. The limiting factor is compu-
tation time.

– The AnEn parameterisation should be investigated using the cost/loss analysis, rather than
just the RMSE of the AnEn median, in order to find the best probabilistic forecast. The
potential issue is reducing the multi-dimensionality of the problem.

– Preliminary results suggest that stratifying the dataset by solar-cycle phase may help in
distinguishing between solar-wind structures expected in the given forecast window, such
as corotating interaction regions in the declining phase of the solar-activity cycle.

– Only basic solar-wind parameters (plasma and magnetic field) were considered for de-
termining the analogue periods, but other datasets may be able to give better contextual
information. E.g. solar-wind compositional and charge-state data (e.g. Geiss, Gloeckler,
and von Steiger, 1995; Lepri and Zurbuchen, 2004) may be useful for determining the
solar-wind types being encountered.

– Longer training windows (days to weeks) may be feasible and useful if the analogue
periods are weighted towards the most recent observations.

– Similarly, it may be helpful to use a greater number of solar-wind parameters in determin-
ing the analogue periods if these training parameters can be accurately weighted towards
the information that they contain for future variations of the forecast parameter (e.g. when
forecasting VR, it may be useful to determine the analogue periods on the basis of VR with
a high weighting, NP with a medium weighting, and TP with a low weighting).

– In this study, past analogues were selected by minimising RMSE with the recent observa-
tions. A more sophisticated pattern-matching or machine-learning algorithm may provide
a better AnEn forecast. This would essentially combine the neural network and AnEn
approaches.
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