51 research outputs found

    Health Reform: What\u27s Next? How Pennsylvania is Preparing for Reform

    Get PDF

    Molecular and Cellular Mechanisms Underlying Preimplantation Embryo Development

    Get PDF
    Preimplantation embryo development refers to the maturation of a fertilized ovum to a blastocyst. This process is highly regulated and required for proper implantation of the blastocyst into the endometrium. During this phase, several tasks must be accomplished. The differentiated zygotic genome must undergo reprogramming back to totipotency in order to generate all of the different types of tissue making up a human. Next, certain cells begin to differentiate to prepare for implantation which occurs at approximately day 7 post-fertilization. This progression is a result of a careful interplay between maternally persistent RNA transcripts and activation of the zygotic genome. After the embryonic genome activation, blastomere differentiation begins to occur. Cellular polarity has been shown to be the signal transduction that initiates this differentiation. Understanding the molecular and cellular mechanisms regulating preimplantation embryo development is of fundamental importance for reproductive science and has numerous applications in fields such as assisted reproductive technology and stem cell therapy

    Two Acinetobacter baumannii Isolates Obtained From a Fatal Necrotizing Fasciitis Infection Display Distinct Genomic and Phenotypic Characteristics in Comparison to Type Strains

    Get PDF
    Acinetobacter baumannii has been recognized as a critical pathogen that causes severe infections worldwide not only because of the emergence of extensively drug-resistant (XDR) derivatives, but also because of its ability to persist in medical environments and colonize compromised patients. While there are numerous reports describing the mechanisms by which this pathogen acquires resistance genes, little is known regarding A. baumannii's virulence functions associated with rare manifestations of infection such as necrotizing fasciitis, making the determination and implementation of alternative therapeutic targets problematic. To address this knowledge gap, this report describes the analysis of the NFAb-1 and NFAb-2 XDR isolates, which were obtained at two time points during a fatal case of necrotizing fasciitis, at the genomic and functional levels. The comparative genomic analysis of these isolates with the ATCC 19606T and ATCC 17978 strains showed that the NFAb-1 and NFAb-2 isolates are genetically different from each other as well as different from the ATCC 19606T and ATCC 17978 clinical isolates. These genomic differences could be reflected in phenotypic differences observed in these NFAb isolates. Biofilm, cell viability and flow cytometry assays indicate that all tested strains caused significant decreases in A549 human alveolar epithelial cell viability with ATCC 17978, NFAb-1 and NFAb-2 producing significantly less biofilm and significantly more hemolysis and capacity for intracellular invasion than ATCC 19606T. NFAb-1 and NFAb-2 also demonstrated negligible surface motility but significant twitching motility compared to ATCC 19606T and ATCC 17978, likely due to the presence of pili exceeding 2 µm in length, which are significantly longer and different from those previously described in the ATCC 19606T and ATCC 17978 strains. Interestingly, infection with cells of the NFAb-1 isolate, which were obtained from a premortem blood sample, lead to significantly higher mortality rates than NFAb-2 bacteria, which were obtained from postmortem tissue samples, when tested using the Galleria mellonella in vivo infection model. These observations suggest potential changes in the virulence phenotype of the A. baumannii necrotizing fasciitis isolates over the course of infection by mechanisms and cell processes that remain to be identified

    Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1

    Get PDF
    SUMO conjugation affects a broad range of processes in Arabidopsis thaliana, including flower initiation, pathogen defense, and responses to cold, drought and salt stress. We investigated two sequence-related SUMO-specific proteases that are both widely expressed and show that they differ significantly in their properties. The closest homolog of SUMO protease ESD4, ESD4-LIKE SUMO PROTEASE 1 (ELS1, alternatively called AtULP1a) has SUMO-specific proteolytic activity, but is functionally distinct from ESD4, as shown by intracellular localization, mutant phenotype and heterologous expression in yeast mutants. Furthermore, we show that the growth defects caused by loss of ESD4 function are not due to increased synthesis of the stress signal salicylic acid, as was previously shown for a SUMO ligase, indicating that impairment of the SUMO system affects plant growth in different ways. Our results demonstrate that two A. thaliana SUMO proteases showing close sequence similarity have distinct in vivo functions

    Arabidopsis thaliana SPF1 and SPF2 are nuclear-located ULP2-like SUMO proteases that act downstream of SIZ1 in plant development

    Get PDF
    Post-translational modifiers such as the small ubiquitin-like modifier (SUMO) peptide act as fast and reversible protein regulators. Functional characterization of the sumoylation machinery has determined the key regulatory role that SUMO plays in plant development. Unlike components of the SUMO conjugation pathway, SUMO proteases (ULPs) are encoded by a relatively large gene family and are potential sources of specificity within the pathway. This study reports a thorough comparative genomics and phylogenetic characterization of plant ULPs, revealing the presence of one ULP1-like and three ULP2-like SUMO protease subgroups within plant genomes. As representatives of an under-studied subgroup, Arabidopsis SPF1 and SPF2 were subjected to functional characterization. Loss-of-function mutants implicated both proteins with vegetative growth, flowering time, and seed size and yield. Mutants constitutively accumulated SUMO conjugates, and yeast complementation assays associated these proteins with the function of ScUlp2 but not ScUlp1. Fluorescence imaging placed both proteins in the plant cell nucleoplasm. Transcriptomics analysis indicated strong regulatory involvement in secondary metabolism, cell wall remodelling, and nitrate assimilation. Furthermore, developmental defects of the spf1-1 spf2-2 (spf1/2) double-mutant opposed those of the major E3 ligase siz1 mutant and, most significantly, developmental and transcriptomic characterization of the siz1 spf1/2 triple-mutant placed SIZ1 as epistatic to SPF1 and SPF2.We thank Mark Hochstrasser (Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA) for kindly providing the ulp1-ts yeast mutant strain. This research was funded by FEDER (through COMPETE), and by Fundacao para a Ciencia e Tecnologia (FCT), within the scope of project SUMOdulator (FCOMP-01-0124-FEDER-028459 and PTDC/BIA-PLA/3850/2012). PHC was supported by FCT (SFRH/BD/44484/2008). HA and FF were supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000007 and Norte-01-0145-FEDER-000008, respectively). The work was supported by FEDER through the COMPETE 2020-Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT, within the framework of projects 'Rede de Investigacao em Biodiversidade e Biologia Evolutiva' (POCI-01-0145-FEDER-006821) and 'Institute for Research and Innovation in Health Sciences' (POCI-01-0145-FEDER-007274). This research was also supported by a grant from the Spanish Ministerio de Ciencia y Tecnologia (AGL2016-75819-C2-1-R) and FEDER (PCQ, AGC, ERB)

    How ubiquitination and autophagy participate in the regulation of the cell response to bacterial infection

    Get PDF
    Bacterial infection relies on the micro-organism's ability to orchestrate the host's cell signalling such that the immune response is not activated. Conversely, the host cell has dedicated signalling pathways for coping with intrusions by pathogens. The autophagy of foreign micro-organisms (known as xenophagy) has emerged as one of the most powerful of these pathways, although the triggering mode remains largely unknown. In the present paper, we discuss the role that certain post-translational modifications (primarily ubiquitination) may play in the activation of xenophagy and how some bacteria have evolved mechanisms to subvert or hijack this process. In particular, we address the role played by P62/SQSTM1 (sequestosome 1). Finally, we discuss how autophagy can be subverted to eliminate bacteria-induced danger signals

    Detection and Functional Characterization of a 215 Amino Acid N-Terminal Extension in the Xanthomonas Type III Effector XopD

    Get PDF
    During evolution, pathogens have developed a variety of strategies to suppress plant-triggered immunity and promote successful infection. In Gram-negative phytopathogenic bacteria, the so-called type III protein secretion system works as a molecular syringe to inject type III effectors (T3Es) into plant cells. The XopD T3E from the strain 85-10 of Xanthomonas campestris pathovar vesicatoria (Xcv) delays the onset of symptom development and alters basal defence responses to promote pathogen growth in infected tomato leaves. XopD was previously described as a modular protein that contains (i) an N-terminal DNA-binding domain (DBD), (ii) two tandemly repeated EAR (ERF-associated amphiphillic repression) motifs involved in transcriptional repression, and (iii) a C-terminal cysteine protease domain, involved in release of SUMO (small ubiquitin-like modifier) from SUMO-modified proteins. Here, we show that the XopD protein that is produced and secreted by Xcv presents an additional N-terminal extension of 215 amino acids. Closer analysis of this newly identified N-terminal domain shows a low complexity region rich in lysine, alanine and glutamic acid residues (KAE-rich) with high propensity to form coiled-coil structures that confers to XopD the ability to form dimers when expressed in E. coli. The full length XopD protein identified in this study (XopD1-760) displays stronger repression of the XopD plant target promoter PR1, as compared to the XopD version annotated in the public databases (XopD216-760). Furthermore, the N-terminal extension of XopD, which is absent in XopD216-760, is essential for XopD type III-dependent secretion and, therefore, for complementation of an Xcv mutant strain deleted from XopD in its ability to delay symptom development in tomato susceptible cultivars. The identification of the complete sequence of XopD opens new perspectives for future studies on the XopD protein and its virulence-associated functions in planta

    When Online Faculty Meet in Person: The CATS Program

    Get PDF
    corecore