402 research outputs found
e-Social Science and Evidence-Based Policy Assessment : Challenges and Solutions
Peer reviewedPreprin
Dispersively detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor
We report the dispersive readout of the spin state of a double quantum dot
formed at the corner states of a silicon nanowire field-effect transistor. Two
face-to-face top-gate electrodes allow us to independently tune the charge
occupation of the quantum dot system down to the few-electron limit. We measure
the charge stability of the double quantum dot in DC transport as well as
dispersively via in-situ gate-based radio frequency reflectometry, where one
top-gate electrode is connected to a resonator. The latter removes the need for
external charge sensors in quantum computing architectures and provides a
compact way to readout the dispersive shift caused by changes in the quantum
capacitance during interdot charge transitions. Here, we observe Pauli
spin-blockade in the high-frequency response of the circuit at finite magnetic
fields between singlet and triplet states. The blockade is lifted at higher
magnetic fields when intra-dot triplet states become the ground state
configuration. A lineshape analysis of the dispersive phase shift reveals
furthermore an intradot valley-orbit splitting of 145 eV.
Our results open up the possibility to operate compact CMOS technology as a
singlet-triplet qubit and make split-gate silicon nanowire architectures an
ideal candidate for the study of spin dynamics
Nanoscale spin rectifiers controlled by the Stark effect
The control of orbital and spin state of single electrons is a key ingredient
for quantum information processing, novel detection schemes, and, more
generally, is of much relevance for spintronics. Coulomb and spin blockade (SB)
in double quantum dots (DQDs) enable advanced single-spin operations that would
be available even for room-temperature applications for sufficiently small
devices. To date, however, spin operations in DQDs were observed at sub-Kelvin
temperatures, a key reason being that scaling a DQD system while retaining an
independent field-effect control on the individual dots is very challenging.
Here we show that quantum-confined Stark effect allows an independent
addressing of two dots only 5 nm apart with no need for aligned nanometer-size
local gating. We thus demonstrate a scalable method to fully control a DQD
device, regardless of its physical size. In the present implementation we show
InAs/InP nanowire (NW) DQDs that display an experimentally detectable SB up to
10 K. We also report and discuss an unexpected re-entrant SB lifting as a
function magnetic-field intensity
Giga-Hertz quantized charge pumping in bottom gate defined InAs nanowire quantum dots
Semiconducting nanowires (NWs) are a versatile, highly tunable material
platform at the heart of many new developments in nanoscale and quantum
physics. Here, we demonstrate charge pumping, i.e., the controlled transport of
individual electrons through an InAs NW quantum dot (QD) device at frequencies
up to GHz. The QD is induced electrostatically in the NW by a series of
local bottom gates in a state of the art device geometry. A periodic modulation
of a single gate is enough to obtain a dc current proportional to the frequency
of the modulation. The dc bias, the modulation amplitude and the gate voltages
on the local gates can be used to control the number of charges conveyed per
cycle. Charge pumping in InAs NWs is relevant not only in metrology as a
current standard, but also opens up the opportunity to investigate a variety of
exotic states of matter, e.g. Majorana modes, by single electron spectroscopy
and correlation experiments.Comment: 21 page
Middle pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels
The well-preserved glacial record in Argentine Patagonia offers a ~ 1 Ma archive of terrestrial climate extremes in southern South America. These glacial deposits remain largely undated beyond the range of radiocarbon dating at ca. 40 ka. Dating old glacial deposits (> several 105 a) by cosmogenic surface exposure methods is problematic because of the uncertainty in moraine degradation and boulder erosion rates. Here, we show that cobbles on outwash terraces can reliably date ‘old’ glacial deposits in the Lago Pueyrredón valley, 47.5° S, Argentina. Favorable environmental conditions (e.g., aridity and strong winds) have enabled continuous surface exposure of cobbles and preservation of outwash terraces. The data demonstrate that nuclide inheritance is negligible and we therefore use the oldest surface cobbles to date the deposit. 10Be concentrations in outwash cobbles reveal a major glacial advance at ca. 260 ka, concurrent with Marine Isotope Stage 8 (MIS 8) and dust peaks in Antarctic ice cores. A 10Be concentration depth-profile in the outwash terrace supports the age and suggests a low terrace erosion rate of ca. 0.5 mm ka− 1. We compare these data to exposure ages obtained from associated moraines and find that surface boulders underestimate the age of the glaciation by ~ 100 ka; thus the oldest boulders in this area do not date closely moraine deposition. The 10Be concentration in moraine cobbles help to constrain moraine degradation rates. These data together with constraints from measured 26Al/10Be ratios suggest that all moraine boulders were likely exhumed after original deposition. We determine the local Last Glacial Maximum (LGM) occurred at ~ 27–25 ka, consistent with the maximum LGM in other parts of Patagonia
NRF2-driven miR-125B1 and miR-29B1 transcriptional regulation controls a novel anti-apoptotic miRNA regulatory network for AML survival
Transcription factor NRF2 is an important regulator of oxidative stress. It is involved in cancer progression, and has abnormal constitutive expression in acute myeloid leukaemia (AML). Posttranscriptional regulation by microRNAs (miRNAs) can affect the malignant phenotype of AML cells. In this study, we identified and characterised NRF2-regulated miRNAs in AML. An miRNA array identified miRNA expression level changes in response to NRF2 knockdown in AML cells. Further analysis of miRNAs concomitantly regulated by knockdown of the NRF2 inhibitor KEAP1 revealed the major candidate NRF2-mediated miRNAs in AML. We identified miR-125B to be upregulated and miR-29B to be downregulated by NRF2 in AML. Subsequent bioinformatic analysis identified putative NRF2 binding sites upstream of the miR-125B1 coding region and downstream of the mir-29B1 coding region. Chromatin immunoprecipitation analyses showed that NRF2 binds to these antioxidant response elements (AREs) located in the 5′ untranslated regions of miR-125B and miR-29B. Finally, primary AML samples transfected with anti-miR-125B antagomiR or miR-29B mimic showed increased cell death responsiveness either alone or co-treated with standard AML chemotherapy. In summary, we find that NRF2 regulation of miR-125B and miR-29B acts to promote leukaemic cell survival, and their manipulation enhances AML responsiveness towards cytotoxic chemotherapeutics
Variation in health beliefs across different types of cervical screening non-participant
Understanding factors associated with different types of cancer screening non-participation will help with the
development of more targeted approaches for improving informed uptake. This study explored patterns of
general health beliefs and behaviour, and cancer-specific beliefs across different types of cervical screening nonparticipants
using the Precaution Adoption Process Model (PAPM). A population-representative sample of
women in Britain completed a home-based survey in 2016. Women classified as non-participants (n=839)
completed additional questions about health beliefs.
Some general health beliefs and behaviours, as well as cancer-specific beliefs, were associated with particular
types of non-participation. For example, those who scored higher on fatalism were more likely to be unaware of
screening (OR=1.74, 95%CI: 1.45–2.08) or unengaged with screening (OR=1.57, CI: 1.11–2.21). Women with
greater deliberative risk perceptions were less likely to be unengaged with screening (OR=0.74 CI: 02.55–0.99)
and less likely to have decided against screening (OR=0.71, CI: 0.59–0.86). Women who had seen a general
practitioner in the last 12 months were less likely to be unaware (OR=0.49, CI: 0.35–0.69), and those reporting
cancer information avoidance were more likely to be unengaged with screening (OR=2.25, CI: 1.15–4.39). Not
wanting to know whether one has cancer was the only factor associated with all types of non-participation.
Interventions to raise awareness of screening should include messages that address fatalistic and negative
beliefs about cancer. Interventions for women who have decided not to be screened could usefully include
messages to ensure the risk of cervical cancer and the relevance and benefits of screening are well communicated
Understanding the interplay between social and spatial behaviour
According to personality psychology, personality traits determine many aspects of human behaviour. However, validating this insight in large groups has been challenging so far, due to the scarcity of multi-channel data. Here, we focus on the relationship between mobility and social behaviour by analysing trajectories and mobile phone interactions of ∼1000 individuals from two high-resolution longitudinal datasets. We identify a connection between the way in which individuals explore new resources and exploit known assets in the social and spatial spheres. We show that different individuals balance the exploration-exploitation trade-off in different ways and we explain part of the variability in the data by the big five personality traits. We point out that, in both realms, extraversion correlates with the attitude towards exploration and routine diversity, while neuroticism and openness account for the tendency to evolve routine over long time-scales. We find no evidence for the existence of classes of individuals across the spatio-social domains. Our results bridge the fields of human geography, sociology and personality psychology and can help improve current models of mobility and tie formation
Revisiting and modelling the woodland farming system of the early Neolithic Linear Pottery Culture (LBK), 5600–4900 B.C
International audienceThis article presents the conception and the conceptual results of a modelling representation of the farming systems of the Linearbandkeramik Culture (LBK). Assuming that there were permanent fields (PF) then, we suggest four ways that support the sustainability of such a farming system over time: a generalized pollarding and coppicing of trees to increase the productivity of woodland areas for foddering more livestock, which itself can then provide more manure for the fields, a generalized use of pulses grown together with cereals during the same cropping season, thereby reducing the needs for manure. Along with assumptions limiting bias on village and family organizations, the conceptual model which we propose for human environment in the LBK aims to be sustainable for long periods and can thereby overcome doubts about the PFs hypothesis for the LBK farming system. Thanks to a reconstruction of the climate of western Europe and the consequent vegetation pattern and productivity arising from it, we propose a protocol of experiments and validation procedures for both testing the PFs hypothesis and defining its eco-geographical area
- …
