7 research outputs found

    Role of matrix metalloproteinase-7 in the modulation of a Chlamydia trachomatis infection

    No full text
    To determine the role of matrix metalloproteinase-7 (MMP-7) in the pathogenesis of chlamydial infection, C57BL/6 wild-type (WT) and MMP-7 knockout (KO) mice were infected intravaginally with Chlamydia trachomatis mouse pneumonitis (MoPn). Over a period of 6 weeks postinfection, various organs were cultured for C. trachomatis. Other infected animals were mated to assess their fertility status. No significant differences were observed between WT and KO mice in the number of animals with positive vaginal cultures, length of time of C. trachomatis shedding, or the number of C. trachomatis inclusion-forming units (IFU) recovered from their genital tracts. Likewise, the number of animals with hydrosalpinx, and the fertility rates and the number of embryos per mouse, were similar in WT and KO mice. Cultures from the spleen, lungs, kidneys and large intestine yielded similar numbers of IFU from WT and KO mice. However, the number of C. trachomatis IFU recovered from the small intestine of KO mice was significantly higher than that recovered from the small intestine of WT mice at 2 weeks postinfection. Because MMP-7 KO mice are deficient in active intestinal α-defensins, the results suggest that these components play a role in regulating colonization of the gastrointestinal tract by Chlamydia. By contrast, MMP-7 is dispensable in the progression and resolution of the genital tract infection

    Immunohistochemical Analysis of Lyme Disease in the Skin of Naive and Infection-Immune Rabbits following Challenge

    No full text
    In this study, skin histopathology from naive and infection-derived immune rabbits was compared following intradermal challenge using Borrelia burgdorferi B31 strain. The presence or absence of spirochetes in relationship to host cellular immune responses was determined from the time of intradermal inoculation to the time of erythema migrans (EM) development (∼7 days in naive rabbits) and through development of challenge immunity (∼5 months in naive rabbits). Skin biopsies were obtained and analyzed for the presence of spirochetes, B cells, T cells, polymorphonuclear cells (PMNs), and macrophages by immunohistochemical techniques. In infected naive animals, morphologically identifiable spirochetes were detected at 2 h and up to 3 weeks postinfection. At 12 and 24 h postinfection there was a marked PMN response that decreased by 36 to 48 h; by 72 h the PMNs were replaced by a few infiltrating macrophages. At the time of EM development and 14 days postinfection, the PMNs and macrophages were replaced by a lymphocytic infiltrate. There was a greater number of spirochetes at 14 days, a time when EM had resolved, than at 7 days postinfection. By 3 weeks postinfection there were few organisms and lymphocytes detectable. In contrast to infected naive rabbits, intact spirochetes were never visualized in skin biopsies from infection-immune rabbits; only spirochetal antigen was detected at 2, 12, and 24 h in the presence of a numerous PMN infiltrate. By 36 h postchallenge, spirochetal antigen could not be detected and the PMN response was replaced by a few infiltrating macrophages. By 72 h postchallenge, PMNs and macrophages were absent from the skin; B and T cells were never detected at any time point in skin from infection-immune rabbits. The destruction of spirochetes in immune animals in the presence of PMNs and in the absence of a lymphocytic infiltrate suggests that infection-derived immunity is antibody mediated

    Lyme disease: A rigorous review of diagnostic criteria and treatment

    No full text
    corecore