1,129 research outputs found

    Acceptability of a Novel Smartphone Application for Rhythm Evaluation in Patients with Atrial Fibrillation

    Get PDF
    Background: Investigators at UMass Medical School and WPI co-developed a novel smartphone application (app), PULSESMART, that detects atrial fibrillation (AF). AF is the world’s most common, serious heart rhythm problem. In its early stages, most cases of AF are paroxysmal (pAF), making them difficult to identify early in the course of disease. Long-term cardiac monitoring is frequently needed to diagnose and prevent complications from AF, such as stroke. Home monitoring for AF can be clinically impactful but existing technologies have cost or methodological limitations. Data are needed on the potential acceptability and usability of heart rhythm monitoring applications. Aim: Our aim was to examine patient acceptability of using a pAF detection app. Methods: 52 patients with pAF underwent rhythm assessment using the app and completed a standardized questionnaire. We looked specifically at responses to 3 questions: 1) how easy was it to use? 2) How important could it be for you? And 3) to what extent does it fit into your daily life? Results: The mean age was 68.5 years and 69% female. The majority of patients reported the app was easy to use (73%), could be important to them and their health (84%), and would fit into their daily lives (78%). Conclusions: After use of the pAF detection app, most patients reported positively. The results suggest that older persons with, or at risk for, pAF may benefit from smartphone-based arrhythmia detection platforms. Further work is needed to assess the feasibility of at-home or in-clinic app use

    Religiousness as a Predictor of Suicide: An Analysis of 162 European Regions

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149318/1/sltb12435.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149318/2/sltb12435_am.pd

    On-line Context Aware Physical Activity Recognition from the Accelerometer and Audio Sensors of Smartphones

    No full text
    International audienceActivity Recognition (AR) from smartphone sensors has be-come a hot topic in the mobile computing domain since it can provide ser-vices directly to the user (health monitoring, fitness, context-awareness) as well as for third party applications and social network (performance sharing, profiling). Most of the research effort has been focused on direct recognition from accelerometer sensors and few studies have integrated the audio channel in their model despite the fact that it is a sensor that is always available on all kinds of smartphones. In this study, we show that audio features bring an important performance improvement over an accelerometer based approach. Moreover, the study demonstrates the interest of considering the smartphone location for on-line context-aware AR and the prediction power of audio features for this task. Finally, an-other contribution of the study is the collected corpus that is made avail-able to the community for AR recognition from audio and accelerometer sensors

    Stress Evolution in Composite Silicon Electrodes during Lithiation/Delithiation

    Full text link
    We report real-time average stress measurements on composite silicon electrodes made with two different binders [Carboxymethyl cellulose (CMC), and polyvinylidene fluoride (PVDF)] during electrochemical lithiation and delithiation. During galvanostatic lithiation at very slow rates, the stress in a CMC-based electrode becomes compressive and increases to 70 MPa, where it reaches a plateau and increases slowly thereafter with capacity. The PVDF-based electrode exhibits similar behavior, although with lower peak compressive stress of about 12 MPa. These initial experiments indicate that the stress evolution in a Si composite electrode depends strongly on the mechanical properties of the binder. Stress data obtained from a series of lithiation/delithiation cycles suggests plasticity induced irreversible shape changes in contacting Si particles, and as a result, the stress response of the system during any given lithiation/delithiation cycle depends on the cycling history of the electrode. While these results constitute the first in-situ stress measurements on composite Si electrodes during electrochemical cycling, the diagnostic technique described herein can be used to assess the mechanical response of a composite electrode made with other active material/binder combinations.Comment: 22 pages, 8 figure

    Coupling of alpha(1)-Adrenoceptors to ERK1/2 in the Human Prostate

    Get PDF
    Introduction: alpha(1)-Adrenoceptors are considered critical for the regulation of prostatic smooth muscle tone. However, previous studies suggested further alpha(1)-adrenoceptor functions besides contraction. Here, we investigated whether alpha(1)-adrenoceptors in the human prostate may activate extracellular signal-regulated kinases (ERK1/2). Methods: Prostate tissues from patients undergoing radical prostatectomy were stimulated in vitro. Activation of ERK1/2 was assessed by Western blot analysis. Expression of ERK1/2 was studied by immunohistochemistry. The effect of ERK1/2 inhibition by U0126 on phenylephrine-induced contraction was studied in organ-bath experiments. Results: Stimulation of human prostate tissue with noradrenaline (30 mu M) or phenylephrine (10 mu M) resulted in ERK activation. This was reflected by increased levels of phosphorylated ERK1/2. Expression of ERK1/2 in the prostate was observed in smooth muscle cells. Incubation of prostate tissue with U0126 (30 mu M) resulted in ERK1/2 inhibition. Dose-dependent phenylephrine-induced contraction of prostate tissue was not modulated by U0126. Conclusions: alpha(1)-Adrenoceptors in the human prostate are coupled to ERK1/2. This may partially explain previous observations suggesting a role of alpha(1)-adrenoceptors in the regulation of prostate growth. Copyright (C) 2011 S. Karger AG, Base

    Rhythmic dynamics and synchronization via dimensionality reduction : application to human gait

    Get PDF
    Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system

    Emulsion sheet doublets as interface trackers for the OPERA experiment

    Get PDF
    New methods for efficient and unambiguous interconnection between electronic counters and target units based on nuclear photographic emulsion films have been developed. The application to the OPERA experiment, that aims at detecting oscillations between mu neutrino and tau neutrino in the CNGS neutrino beam, is reported in this paper. In order to reduce background due to latent tracks collected before installation in the detector, on-site large-scale treatments of the emulsions ("refreshing") have been applied. Changeable Sheet (CSd) packages, each made of a doublet of emulsion films, have been designed, assembled and coupled to the OPERA target units ("ECC bricks"). A device has been built to print X-ray spots for accurate interconnection both within the CSd and between the CSd and the related ECC brick. Sample emulsion films have been extensively scanned with state-of-the-art automated optical microscopes. Efficient track-matching and powerful background rejection have been achieved in tests with electronically tagged penetrating muons. Further improvement of in-doublet film alignment was obtained by matching the pattern of low-energy electron tracks. The commissioning of the overall OPERA alignment procedure is in progress.Comment: 19 pages, 19 figure

    Planck Intermediate Results. IV. The XMM-Newton validation programme for new Planck galaxy clusters

    Get PDF
    We present the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates. We observed 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey. The candidates were selected using ancillary data flags derived from the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the aim of pushing into the low SZ flux, high-z regime and testing RASS flags as indicators of candidate reliability. 14 new clusters were detected by XMM, including 2 double systems. Redshifts lie in the range 0.2 to 0.9, with 6 clusters at z>0.5. Estimated M500 range from 2.5 10^14 to 8 10^14 Msun. We discuss our results in the context of the full XMM validation programme, in which 51 new clusters have been detected. This includes 4 double and 2 triple systems, some of which are chance projections on the sky of clusters at different z. We find that association with a RASS-BSC source is a robust indicator of the reliability of a candidate, whereas association with a FSC source does not guarantee that the SZ candidate is a bona fide cluster. Nevertheless, most Planck clusters appear in RASS maps, with a significance greater than 2 sigma being a good indication that the candidate is a real cluster. The full sample gives a Planck sensitivity threshold of Y500 ~ 4 10^-4 arcmin^2, with indication for Malmquist bias in the YX-Y500 relation below this level. The corresponding mass threshold depends on z. Systems with M500 > 5 10^14 Msun at z > 0.5 are easily detectable with Planck. The newly-detected clusters follow the YX-Y500 relation derived from X-ray selected samples. Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray luminosity on average for their mass. There is no indication of departure from standard self-similar evolution in the X-ray versus SZ scaling properties. (abridged)Comment: accepted by A&

    Developing an algorithm for pulse oximetry derived respiratory rate (RRoxi): a healthy volunteer study

    Get PDF
    Objective The presence of respiratory information within the pulse oximeter signal (PPG) is a well-documented phenomenon. However, extracting this information for the purpose of continuously monitoring respiratory rate requires: (1) the recognition of the multi-faceted manifestations of respiratory modulation components within the PPG and the complex interactions among them; (2) the implementation of appropriate advanced signal processing techniques to take full advantage of this information; and (3) the post-processing infrastructure to deliver a clinically useful reported respiratory rate to the end user. A holistic algorithmic approach to the problem is therefore required. We have developed the RROXI algorithm based on this principle and its performance on healthy subject trial data is described herein

    Measurement of the atmospheric muon charge ratio with the OPERA detector

    Get PDF
    The OPERA detector at the Gran Sasso underground laboratory (LNGS) was used to measure the atmospheric muon charge ratio in the TeV energy region. We analyzed 403069 atmospheric muons corresponding to 113.4 days of livetime during the 2008 CNGS run. We computed separately the muon charge ratio for single and for multiple muon events in order to select different energy regions of the primary cosmic ray spectrum and to test the charge ratio dependence on the primary composition. The measured charge ratio values were corrected taking into account the charge-misidentification errors. Data have also been grouped in five bins of the "vertical surface energy". A fit to a simplified model of muon production in the atmosphere allowed the determination of the pion and kaon charge ratios weighted by the cosmic ray energy spectrum.Comment: 14 pages, 10 figure
    • 

    corecore