
Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

 Original Paper 

 Urol Int 2011;86:427–433 
 DOI: 10.1159/000322639 

 Coupling of  �  1 -Adrenoceptors to ERK1/2 
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ERK1/2 inhibition. Dose-dependent phenylephrine-induced 
contraction of prostate tissue was not modulated by U0126. 
 Conclusions:   �  1 -Adrenoceptors in the human prostate are 
coupled to ERK1/2. This may partially explain previous obser-
vations suggesting a role of  �  1 -adrenoceptors in the regula-
tion of prostate growth. 
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 Introduction 

 It is generally accepted that prostate size (static com-
ponent) and tone (dynamic component) contribute to 
lower urinary tract symptoms in benign prostate hyper-
plasia (BPH)  [1] . Prostate smooth muscle tone is critically 
regulated by  �  1 -adrenoceptor-mediated contraction  [1, 
2] . As treatment with  �  1 -adrenoceptor antagonists is a 
well-established therapy of lower urinary tract symptoms 
in patients with BPH  [1, 2] , understanding  �  1 -adrenocep-
tor function in the prostate is of particular interest.
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 Abstract 

  Introduction:   �  1 -Adrenoceptors are considered critical for 
the regulation of prostatic smooth muscle tone. However, 
previous studies suggested further  �  1 -adrenoceptor func-
tions besides contraction. Here, we investigated whether 
  �  1 -adrenoceptors in the human prostate may activate extra-
cellular signal-regulated kinases (ERK1/2).  Methods:  Prostate 
tissues from patients undergoing radical prostatectomy 
were stimulated in vitro. Activation of ERK1/2 was assessed 
by Western blot analysis. Expression of ERK1/2 was studied 
by immunohistochemistry. The effect of ERK1/2 inhibition by 
U0126 on phenylephrine-induced contraction was studied 
in organ-bath experiments.  Results:  Stimulation of human 
prostate tissue with noradrenaline (30  �  M ) or phenylephrine 
(10  �  M ) resulted in ERK activation. This was reflected by 
 increased levels of phosphorylated ERK1/2. Expression of 
ERK1/2 in the prostate was observed in smooth muscle cells. 
Incubation of prostate tissue with U0126 (30  �  M ) resulted in 
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   �  1 -Adrenoceptor-induced smooth muscle contraction 
is mediated by the activation of two intracellular signal-
ing pathways, i.e. the Ca 2+ -dependent and the Rho ki-
nase-dependent signaling cascades  [3] . Studies using ex-
traprostatic cell lines demonstrated that  �  1 -adrenocep-
tors may additionally couple to nonmotoric signaling 
pathways, which are involved in growth, proliferation 
and differentiation  [4, 5] . In vivo studies in rodents and 
investigations using isolated cultured cells have provided 
evidence that prostate  �  1 -adrenoceptors may show such 
nonmotoric coupling in addition to their role in contrac-
tion  [6–9] . However, any relevance in intact human pros-
tate tissue has not been tested to date, and any nonmo-
toric signaling by  �  1 -adrenoceptors in the prostate is in-
sufficiently understood.

  In mice and rats, sympathetic innervation may be in-
volved in experimentally induced prostate hyperplasia by 
 �  1 -adrenoceptor activation  [6–8] . In cultured prostate 
stroma cells,  �  1 -adrenoceptor stimulation may result in 
proliferation  [9] . Extracellular signal-regulated kinase 
1/2 (ERK1/2) represents an important mediator of growth 
and proliferation  [10] . Here, we investigated whether  �  1 -
adrenoceptor stimulation in human prostate tissue leads 
to activation of ERK1/2, and the possible involvement of 
ERK1/2 in  �  1 -adrenergic contraction.

  Materials and Methods 

 Human Prostate Tissue 
 Human prostate tissue was obtained from patients (n = 31) 

undergoing radical prostatectomy for prostate cancer. Represen-
tative tissue sections did not exhibit histological signs of neopla-
sia, cancer or inflammation. All procedures were approved by the 
ethics committee of the Ludwig Maximilian University in Mu-
nich, Germany, and in accordance with the Helsinki Declaration 
of 1975, as revised in 1983.

  Sampling and in vitro Stimulation 
 For analysis by immunohistochemistry, samples of prostate 

tissue were shock frozen in liquid nitrogen after prostatectomy 
and pathological examination without any additional delay. For 
in vitro stimulation, prostate tissue specimens were prepared as 
small strips (2–3  !  1 mm) and allocated to 4 polyethylene tubes 
containing 10 ml Krebs-Henseleit solution. During the experi-
ments, the tubes were kept at 37   °   C and continuously oxygenized 
with carbogen (95% O 2 , 5% CO 2 ). Tissues were allowed to equili-
brate for 20 min. For stimulation with noradrenaline or phenyl-
ephrine, a 10 m M  stock solution was added in the required in-
tervals to obtain the final concentrations of 30  �  M  or 10  �  M , re-
spectively.    All    samples    were    exposed     to     identical     experimen-
tal conditions and periods, so that the unstimulated samples 
(‘0 min’) were incubated as long as all other samples. At the end 
of each experiment, all samples were shock frozen in liquid nitro-

gen and stored at –80   °   C until Western blot analysis was per-
formed. For incubation with U0126, 30  � l of a 10 m M  stock solu-
tion or solvent (DMSO) was added to obtain a final concentration 
of 30  �  M . Samples were shock frozen after 30 min and stored at 
–80 °   C until Western blot analysis was performed.

  Assessment of ERK Activity 
 ERK1/2 is activated by phosphorylation at threonine 204/ty-

rosine 202 through mitogen-activated protein kinase (MAPK)/
ERK kinase (MEK). For semiquantitative assessment of ERK ac-
tivity, the ERK phosphorylation state was compared between 
samples by Western blot analysis with a phospho-specific anti-
body. After densitometric quantification, phospho-ERK in stim-
ulated samples was expressed as percent of the content in the un-
stimulated sample.

  Western Blot Analysis 
 Frozen prostate tissue was homogenized in a buffer containing 

25 m M  Tris/HCl, 10  �  M  phenylmethanesulfonyl fluoride, 1 m M  
benzamidine and 10  � g/ml leupeptin hemisulfate, using a Fast-
Prep � -24 system with matrix A (MP Biomedicals, Illkirch, 
France). After brief centrifugation, supernatants were assayed for 
protein concentration using the Dc-Assay kit (Biorad, Munich, 
Germany) and boiled for 10 min with sample buffer (Roth, Karls-
ruhe, Germany). Samples (20  � g/lane) were subjected to SDS-
PAGE, and proteins were blotted on nitrocellulose membranes. 
The membranes were blocked overnight with blotting-grade milk 
powder (Roth, Karlsruhe, Germany), and subsequently incubated 
with primary antibodies. For detection of phospho-ERK and total 
ERK, the following primary antibodies were diluted 1:   500 in 
phosphate-buffered saline containing 0.1% Tween 20 (PBS-T) and 
milk powder and applied to membranes: mouse anti-phospho-
p44/42 MAPK (ERK1/2) (E10) antibody and mouse anti p44/42 
MAPK (ERK1/2) (3A7) antibody (Cell Signaling Technology, 
Danvers, Mass., USA). Subsequently, membranes were washed 
with PBS-T, and incubated with secondary peroxidase-coupled 
antibody (Calbiochem, San Diego, Calif., USA) diluted 1:   5,000 in 
PBS-T containing mild powder. Blots were developed with en-
hanced chemiluminescence (ECL) using ECL Hyperfilm (GE 
Healthcare, Freiburg, Germany). Intensities of the resulting bands 
were quantified using Image J (NIH, Bethesda, Md., USA).

  Immunohistochemistry 
 Sections (6–8  � m) from frozen tissues were stained by an in-

direct immunoperoxidase technique. Sections were fixed with ac-
etone, and endogenous peroxidase activity was subsequently 
blocked by 0.03% H 2 O 2 . Thereafter, sections were blocked with 
horse serum diluted 1:   10 in PBS and incubated with primary 
mouse anti-p44/42 MAPK (ERK1/2) (3A7) antibody (Cell Signal-
ing Technology). The antibody was diluted 1:   50 in PBS at room 
temperature and incubated with the sections overnight. After 
washing threefold in PBS, biotinylated secondary horse anti-
mouse antibody (Vector Laboratories, Burlingame, Calif., USA) 
and avidin-biotin-peroxidase complex (Vector Laboratories) were 
sequentially applied for 30 min each. Staining was performed by 
using the AEC peroxidase substrate kit (Vector Laboratories) so 
that brown color represents immunopositive staining. Finally, all 
sections were counterstained with hemalaun. Control stainings 
without primary antibodies did not yield any signals.
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  Measurement of Prostate Smooth Muscle Contraction 
 Prostate strips (3  !  3  !  6 mm) were mounted in 5 ml aerated 

(95% O 2  and 5% CO 2 ) tissue baths (37   °   C, pH 7.4) containing Krebs-
Henseleit solution. Mechanical activity was registered with a Grass 
Polygraph model 7E (Grass Technologies, West Warwick, R.I., 

USA). Preparations were stretched to 0.5 g and left to equilibrate 
for 45 min to attain a stable resting tone. U0126 (30  �  M ) or solvent 
(DMSO) were applied 30 min before starting of phen ylephrine
application. After construction of concentration response curves 
for phenylephrine, chambers were washed 3 times with Krebs-
Henseleit solution, and viability of the preparations was assessed 
by exposure to a Krebs-Henseleit solution containing 200 m M  KCl.

  Drugs and Solutions 
 U0126 is an inhibitor of MEK, which is the specific activator 

of ERK1/2. U0126 (Cell Signaling Technology) was dissolved in 
DMSO and kept as 10 m M  stock solution at –20   °   C until use. Aque-
ous stock solutions of the  �  1 -adrenoceptor agonist phenylephrine 
(10 m M;  Sigma, St. Louis, Mo., USA) were freshly prepared for 
each experiment.

  Statistical Analysis 
 Data are presented as means  8  SEM with the indicated num-

ber of experiments. A two-tailed Student’s t test was used for 
paired or unpaired observations. p  !  0.05 was considered statisti-
cally significant.

  Results 

 ERK1/2 Activation 
 Significant ERK1/2 activation occurred 5, 10 and 20 

min after stimulation with noradrenaline (30  �  M ), as re-
flected by increases of ERK1/2 phosphorylation ( fig. 1 ). 
Thus, 5 min after stimulation with noradrenaline, phos-
pho-ERK1/2 was 194  8  24% of phospho-ERK1/2 in un-
stimulated samples (p  !  0.002). 10 min after stimulation, 
phospho-ERK1/2 was 250  8  49% of phospho-ERK1/2 in 
unstimulated samples (p  !  0.009). 20 min after stimula-
tion, phospho-ERK1/2 was 226  8  30% of phospho-
ERK1/2 in unstimulated samples (p  !  0.001). The content 
of total ERK1/2 did not change during stimulation ex-
periments ( fig. 1 ).

  After stimulation with phenylephrine (10  �  M ), signif-
icant ERK1/2 activation occurred after 10 min stimula-
tion, as reflected by an increase in ERK1/2 phosphoryla-
tion ( fig. 2 ). Thus, 10 min after stimulation with phenyl-
ephrine, phospho-ERK1/2 was 143  8  16% of phospho-
ERK1/2 in unstimulated samples (p  !  0.02;  fig. 2 ). The 
content of total ERK1/2 in prostate tissue did not change 
during stimulation experiments ( fig. 2 ).

  Immunohistochemistry 
 ERK1/2 staining was found in perinuclear regions of 

prostate smooth muscle cells, and of glandular cells 
( fig. 3 ). Control experiments, where the primary antibody 
was replaced by PBS, did not show any immunoreactivity 
( fig. 3 ).
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  Fig. 1.  ERK1/2 activation by noradrenaline in human prostate tis-
sue. Samples of human prostate tissue were stimulated with nor-
adrenaline (30  �  M ) in vitro. ERK1/2 activity in samples was 
 assessed by Western blot analysis with phospho-specific and 
 non-phospho-specific antibodies, and subsequent densitometric 
quantification of all experiments. Shown are representative West-
ern blots ( a ) and results from densitometric quantification ( b ); 
data are means  8  SEM from experiments with tissues from 8 pa-
tients ( # p  !  0.05 vs. 0 min). On each Western blot, different stim-
ulated and unstimulated samples are from the same patient. 
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  Tension Measurements 
 Phenylephrine induced concentration-dependent con-

tractions of human prostate tissue ( fig. 4 a). This contrac-
tion was not modulated by application of the MEK inhibi-
tor U0126 (30  �  M)  ( fig.  4 a). Thus, the maximal phenyl-

ephrine-induced contraction was 0.462  8  0.06 g (30  �  M  
phenylephrine) in prostate strips with DMSO, and 0.498  8  
0.09 g (10  �  M  phenylephrine) in prostate strips with U0126 
( fig. 4 a). Likewise, any difference was absent when phenyl-
ephrine-induced contraction was expressed as a percent-
age of high-molar KCl-induced contraction (42  8  15% of 
KCl-induced contraction with DMSO, and 37  8  9% of 
KCl-induced contraction with U0126, p = 0.783) ( fig. 4 a).

  Effect of U0126 on ERK1/2 Activity 
 Incubation of intact human prostate tissue with the 

MEK inhibitor U0126 (30  �  M ) resulted in a reduced con-
tent of phospho-ERK1/2 in these tissues, while the con-
tent of total ERK1/2 remained unaltered ( fig. 4 b). Thus, 
phospho-ERK1/2 after incubation with U0126 was 17  8  
4% when referred to phospho-ERK1/2 after DMSO in-
cubation ( fig. 4 b). This reflects inhibition of ERK1/2 by 
83  8  4% in these samples.
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  Fig. 2.  ERK1/2 activation by phenylephrine in human prostate tis-
sue. Samples of human prostate tissue were stimulated with phen-
ylephrine (10  �  M ) in vitro. ERK1/2 activity in samples was 
 assessed by Western blot analysis with phospho-specific and 
 non-phospho-specific antibodies, and subsequent densitometric 
quantification of all experiments. Shown are representative West-
ern blots ( a ) and results from densitometric quantification ( b ); 
data are means  8  SEM from experiments with tissues from 10 
patients ( # p  !  0.05 vs. 0 min). On each Western blot, different 
stimulated and unstimulated samples are from the same patient. 
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  Fig. 3.  ERK1/2 expression in human prostate tissue. Sections of 
human prostate tissue were stained by the peroxidase technique 
using an ERK1/2-specific antibody (upper panel). In control 
stainings, the primary antibody was replaced by PBS (lower pan-
el). Shown are representative stainings from experiments with tis-
sues from 5 patients with similar results. Examples for smooth 
muscle cells (smc) and glandular cells (gc) are indicated by arrows.               
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  Discussion 

 The current study demonstrates that  �  1 -adrenocep-
tors in intact human prostate tissue are coupled to 
ERK1/2, which is not involved in contractile mecha-
nisms. This may be concluded from three main findings: 
(1) noradrenaline and phenylephrine stimulation result-
ed in ERK1/2 activation in intact human prostate tissue, 
(2) ERK1/2 inhibition did not modulate phenylephrine-
induced contraction of human prostate strips, and (3) a 
major part of ERK1/2 in the human prostate tissue is lo-
cated to smooth muscle cells.

  The contractile function of  �  1 -adrenoceptors, as well 
as the expression and distribution of different  �  1 -adreno-
ceptor subtypes have been intensively studied in the pros-
tate and lower urinary tract tissues  [11] .  �  1 -Adrenocep-
tors in prostate smooth muscle cells are coupled to Ca 2+ /
calmodulin-dependent signaling via phospholipase C, 
and to the RhoA/Rho kinase pathway, which both lead to 
contraction  [3] . Our results suggest that coupling of pros-
tate  �  1 -adrenoceptors is not confined to these contrac-
tion-mediating signaling cascades, but that  �  1 -adreno-
ceptors in the human prostate are additionally coupled to 
the ERK1/2 signaling pathway, which is not involved in 
 �  1 -adrenoceptor-mediated prostate smooth muscle con-
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  Fig. 4.  Effect of the MEK inhibitor U0126 
on phenylephrine-induced prostate con-
traction (     a ) and ERK activity ( b ).  a  Phen-
ylephrine-induced contraction of prostate 
tissue was determined by myographic 
measurements. The MEK inhibitor U0126 
(30  �  M ) or solvent (DMSO) was applied
30 min before the first dose of phenyleph-
rine. Concentration response curves for 
phenylephrine are shown as absolute val-
ues in g (left panel), or referred to high-
molar KCl-induced contraction (right 
panel). Data are means  8  SEM from ex-
periments with tissues from 5 patients.
 b  ERK1/2 inhibition by the MEK inhibitor 
U0126 is shown. Samples of human pros-
tate tissue were incubated with U0126
(30  �  M ) or DMSO for 30 min in vitro. Sub-
sequently, ERK1/2 activity in samples was 
assessed by Western blot analysis with 
phospho-specific and non-phospho-spe-
cific antibodies followed by densitometric 
quantification of all experiments. Shown 
are representative Western blots (upper 
panel) and results from densitometric 
quantification (lower panels). Data are 
means  8  SEM from experiments with tis-
sues from 3 patients.     
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traction. ERK1/2 represents a member of the MAPK fam-
ily and mediates proliferation, growth and differentiation 
in many different cell types, tissues and species  [10] .

  The activation of ERK1/2 by heptahelical, G protein-
coupled receptors has been intensively studied using non-
prostatic cell lines  [4, 5] .  �  1 -Adrenoceptor stimulation 
may lead to ERK1/2 activation in smooth muscle cells, 
cardiac myocytes and other cell types  [4, 5] . We demon-
strate that a similar concept is of relevance in human 
prostate smooth muscle. We assume that ERK1/2 activa-
tion observed in our study was at least partially located to 
smooth muscle cells. As shown by our immunohisto-
chemical stainings, ERK1/2 is expressed in perinuclear 
regions of smooth muscle and glandular cells in the hu-
man prostate. A considerable part of prostate tissue con-
sists of stroma, where smooth muscle cells are a major cell 
type  [1] . This idea of a localization of  �  1 -adrenergic ERK 
activation is supported by a previous study, where ERK1/2 
expression was observed in isolated cultured human 
prostatic smooth muscle cells  [9] . Interestingly, norepi-
nephrine induced ERK1/2 activation in cultured smooth 
muscle and stromal cells, but not in cultured epithelial 
cells in that study  [9] . However, neither the type of adre-
noceptor mediating this phosphorylation nor any rele-
vance for intact human prostate tissue were identified. In 
fact, conditions may differ between cultured cells and in-
tact tissues, e.g. due to lacking paracrine regulation of 
different cell types or due to changed expression patterns 
during cell culture. Our results show that stimulation of 
 �  1 -adrenoceptors does in fact lead to ERK1/2 activation 
in intact human prostate tissue. 

  While the role of ERK1/2 for growth of prostate cancer 
cells is well established  [12–15] , the function of ERK in 
prostate smooth muscle cells is less well understood. In-
deed, the involvement of ERK1/2 in malignant transfor-
mation and proliferation of prostate tumor cells has been 
studied by numerous authors  [16] . As ERK1/2 represents 
a common regulator of growth and differentiation  [10] , 
ERK1/2 likely bears similar functions in prostate smooth 
muscle cells. Indeed, ERK1/2 mediates proliferation in 
different lines of cultured prostate stromal cells  [13, 17, 
18] . Therefore,  �  1 -adrenoceptor-mediated ERK1/2 acti-
vation may be of relevance for the regulation of prostate 
growth. In rats and mice, (sub)chronic application of 
phenylephrine in vivo caused hyperplasia and dysplastic 
changes of the prostate  [6, 7] . Another study using sym-
pathectomized rats, suggested a regulation of prostate 
growth by the sympathetic innervation  [8] . In a study us-
ing cultured human prostate smooth muscle cells, nor-
epinephrine-induced ERK1/2 activation was associated 

with proliferation  [9] . Together, this led to the assump-
tion that  �  1 -adrenoceptors may play a role in prostate 
growth and hyperplasia. 

  Similar assumptions were additionally raised by ob-
servations in studies performed in patients with BPH. 
Treatment with  �  1 -adrenoceptor blockers in patients 
with lower urinary tract symptoms is believed to relieve 
urine flow at least partially by a decrease in prostate 
smooth muscle tone  [1, 2, 19] . However, it has been pro-
posed that  �  1 -adrenoceptor blockers may act on BPH by 
suppression of prostate growth  [20–22] . In BPH, the treat-
ment with  �  1 -adrenoceptor blockers may result in stro-
mal regression and reduced growth  [23–27] . On the oth-
er hand, regression of prostate volume did not become 
apparent during the widespread application of  �  1 -adre-
noceptor antagonists in patients with BPH. Treatment 
with alfuzosin for 3 months did not effectively reduce 
prostate volume  [28] . In another trial, where therapy with 
terazosin reduced total prostate volume, the authors con-
cluded that further studies are mandatory  [28] . 

  The limited effect of  �  1 -adrenoceptor blockers on 
prostate size in BPH patients suggest that ERK1/2 activ-
ity and growth of the prostate are regulated by numerous 
different factors in addition to  �  1 -adrenoceptors. Accord-
ingly, ERK1/2 is well known to be regulated by various 
nonadrenergic stimuli  [10] . Growth factors and cytokines 
are important regulators of ERK1/2 and growth, which 
may contribute to prostate hyperplasia together with a 
 �  1 -adrenoceptor-dependent regulation  [29, 30] . Thus, 
regulation of prostate growth and ERK1/2 activity in  �  1 -
adrenoceptor blocker-treated patients may be covered by 
regulation by such growth factors and cytokines.

  Conclusions 

 Our findings demonstrate that  �  1 -adrenoceptors in 
intact human prostate tissue are coupled to ERK1/2 in 
addition to the contraction-mediating pathways. This 
may explain previous observations suggesting a role of 
 �  1 -adrenoceptors in the regulation of prostate growth in 
patients and rodents, and points to  �  1 -adrenoceptor 
functions beyond contraction.
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