1,279 research outputs found

    Photoluminescent characteristics of Ni-catalyzed GaN nanowires

    Get PDF
    The authors report on time-integrated and time-resolved photoluminescence (PL) of GaN nanowires grown by the Ni-catalyst-assisted vapor-liquid-solid method. From PL spectra of Ni-catalyzed GaN nanowires at 10 K, several PL peaks were observed at 3.472, 3.437, and 3.266 eV, respectively. PL peaks at 3.472 and 3.266 eV are attributed to neutral-donor-bound excitons and donor-acceptor pair, respectively. Furthermore, according to the results from temperature-dependent and time-resolved PL measurements, the origin of the PL peak at 3.437 eV is also discussed. (c) 2006 American Institute of Physics.X1147sciescopu

    Country report on building energy codes in Republic of Korea

    Get PDF
    노트 : This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof

    A Comparison of Algorithms for the Construction of SZ Cluster Catalogues

    Get PDF
    We evaluate the construction methodology of an all-sky catalogue of galaxy clusters detected through the Sunyaev-Zel'dovich (SZ) effect. We perform an extensive comparison of twelve algorithms applied to the same detailed simulations of the millimeter and submillimeter sky based on a Planck-like case. We present the results of this "SZ Challenge" in terms of catalogue completeness, purity, astrometric and photometric reconstruction. Our results provide a comparison of a representative sample of SZ detection algorithms and highlight important issues in their application. In our study case, we show that the exact expected number of clusters remains uncertain (about a thousand cluster candidates at |b|> 20 deg with 90% purity) and that it depends on the SZ model and on the detailed sky simulations, and on algorithmic implementation of the detection methods. We also estimate the astrometric precision of the cluster candidates which is found of the order of ~2 arcmins on average, and the photometric uncertainty of order ~30%, depending on flux.Comment: Accepted for publication in A&A: 14 pages, 7 figures. Detailed figures added in Appendi

    Quantifying Capacity Loss due to Solid-Electrolyte-Interphase Layer Formation on Silicon Negative Electrodes in Lithium-ion Batteries

    Full text link
    Charge lost per unit surface area of a silicon electrode due to the formation of solid-electrolyte-interphase (SEI) layer during initial lithiation was quantified, and the species that constitute this layer were identified. Coin cells made with Si thin-film electrodes were subjected to a combination of galvanostatic and potentiostatic lithiation and delithiation cycles to accurately measure the capacity lost to SEI-layer formation. While the planar geometry of amorphous thin films allows accurate calculation of surface area, creation of additional surface by cracking was prevented by minimizing the thickness of the Si film. The cycled electrodes were analyzed with X-ray photoelectron spectroscopy to characterize the composition of the SEI layer. The charge lost due to SEI formation measured from coin cell experiments was found to be in good agreement with the first-cycle capacity loss during the initial lithiation of a Si (100) crystal with planar geometry. The methodology presented in this work is expected to provide a useful practical tool for battery-material developers in estimating the expected capacity loss due to first cycle SEI-layer formation and in choosing an appropriate particle size distribution that balances mechanical integrity and the first cycle capacity loss in large volume expansion electrodes for lithium-ion batteries.Comment: 15 pages, 9 figures; Journal of Power Sources, 201

    Effect of Tylosin on Rumen Fermantation in vitro

    Full text link

    On-line Context Aware Physical Activity Recognition from the Accelerometer and Audio Sensors of Smartphones

    No full text
    International audienceActivity Recognition (AR) from smartphone sensors has be-come a hot topic in the mobile computing domain since it can provide ser-vices directly to the user (health monitoring, fitness, context-awareness) as well as for third party applications and social network (performance sharing, profiling). Most of the research effort has been focused on direct recognition from accelerometer sensors and few studies have integrated the audio channel in their model despite the fact that it is a sensor that is always available on all kinds of smartphones. In this study, we show that audio features bring an important performance improvement over an accelerometer based approach. Moreover, the study demonstrates the interest of considering the smartphone location for on-line context-aware AR and the prediction power of audio features for this task. Finally, an-other contribution of the study is the collected corpus that is made avail-able to the community for AR recognition from audio and accelerometer sensors

    Detection of non-thermal X-ray emission in the lobes and jets of Cygnus A

    Get PDF
    This article has been published in Monthly Notices of the Royal Astronomical Society © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. 21 pages, 8 figuresWe present a spectral analysis of the lobes and X-ray jets of Cygnus A, using more than 2 Ms of Chandra\textit{Chandra} observations. The X-ray jets are misaligned with the radio jets and significantly wider. We detect non-thermal emission components in both lobes and jets. For the eastern lobe and jet, we find 1 keV flux densities of 7110+1071_{-10}^{+10} nJy and 244+424_{-4}^{+4} nJy, and photon indices of 1.720.03+0.031.72_{-0.03}^{+0.03} and 1.640.04+0.041.64_{-0.04}^{+0.04} respectively. For the western lobe and jet, we find flux densities of 5013+1250_{-13}^{+12} nJy and 135+513_{-5}^{+5} nJy, and photon indices of 1.970.10+0.231.97_{-0.10}^{+0.23} and 1.860.12+0.181.86_{-0.12}^{+0.18} respectively. Using these results, we modeled the electron energy distributions of the lobes as broken power laws with age breaks. We find that a significant population of non-radiating particles is required to account for the total pressure of the eastern lobe. In the western lobe, no such population is required and the low energy cutoff to the electron distribution there needs to be raised to obtain pressures consistent with observations. This discrepancy is a consequence of the differing X-ray photon indices, which may indicate that the turnover in the inverse-Compton spectrum of the western lobe is at lower energies than in the eastern lobe. We modeled the emission from both jets as inverse-Compton emission. There is a narrow region of parameter space for which the X-ray jet can be a relic of an earlier active phase, although lack of knowledge about the jet's electron distribution and particle content makes the modelling uncertain.Peer reviewedFinal Published versio

    Stress Evolution in Composite Silicon Electrodes during Lithiation/Delithiation

    Full text link
    We report real-time average stress measurements on composite silicon electrodes made with two different binders [Carboxymethyl cellulose (CMC), and polyvinylidene fluoride (PVDF)] during electrochemical lithiation and delithiation. During galvanostatic lithiation at very slow rates, the stress in a CMC-based electrode becomes compressive and increases to 70 MPa, where it reaches a plateau and increases slowly thereafter with capacity. The PVDF-based electrode exhibits similar behavior, although with lower peak compressive stress of about 12 MPa. These initial experiments indicate that the stress evolution in a Si composite electrode depends strongly on the mechanical properties of the binder. Stress data obtained from a series of lithiation/delithiation cycles suggests plasticity induced irreversible shape changes in contacting Si particles, and as a result, the stress response of the system during any given lithiation/delithiation cycle depends on the cycling history of the electrode. While these results constitute the first in-situ stress measurements on composite Si electrodes during electrochemical cycling, the diagnostic technique described herein can be used to assess the mechanical response of a composite electrode made with other active material/binder combinations.Comment: 22 pages, 8 figure

    HI intensity mapping : a single dish approach

    Full text link
    We discuss the detection of large scale HI intensity fluctuations using a single dish approach with the ultimate objective of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. We present 3D power spectra, 2D angular power spectra for individual redshift slices, and also individual line-of-sight spectra, computed using the S^3 simulated HI catalogue which is based on the Millennium Simulation. We consider optimal instrument design and survey strategies for a single dish observation at low and high redshift for a fixed sensitivity. For a survey corresponding to an instrument with T_sys=50 K, 50 feed horns and 1 year of observations, we find that at low redshift (z \approx 0.3), a resolution of 40 arc min and a survey of 5000 deg^2 is close to optimal, whereas at higher redshift (z \approx 0.9) a resolution of 10 arcmin and 500 deg^2 would be necessary. Continuum foreground emission from the Galaxy and extragalactic radio sources are potentially a problem. We suggest that it could be that the dominant extragalactic foreground comes from the clustering of very weak sources. We assess its amplitude and discuss ways by which it might be mitigated. We then introduce our concept for a single dish telescope designed to detect BAO at low redshifts. It involves an under-illumintated static 40 m dish and a 60 element receiver array held 90 m above the under-illuminated dish. Correlation receivers will be used with each main science beam referenced against an antenna pointing at one of the Celestial Poles for stability and control of systematics. We make sensitivity estimates for our proposed system and projections for the uncertainties on the power spectrum after 1 year of observations. We find that it is possible to measure the acoustic scale at z\approx 0.3 with an accuracy 2.4% and that w can be measured to an accuracy of 16%.Comment: 20 pages, 20 figures, submitted to MNRA
    corecore