14 research outputs found

    Deliverable Raport D4.6 Tools for generating QMRF and QPRF reports

    Get PDF
    Scientific reports carry significant importance for the straightforward and effective transfer of knowledge, results and ideas. Good practice dictates that reports should be well-structured and concise. This deliverable describes the reporting services for models, predictions and validation tasks that have been integrated within the eNanoMapper (eNM) modelling infrastructure. Validation services have been added to the Jaqpot Quattro (JQ) modelling platform and the nano-lazar read-across framework developed within WP4 to support eNM modelling activities. Moreover, we have proceeded with the development of reporting services for predictions and models, respectively QPRF and QMRF reports. Therefore, in this deliverable, we first describe the three validation schemes created, namely training set split, cross- and external validation in detail and demonstrate their functionality both on API and UI levels. We then proceed with the description of the read across functionalities and finally, we present and describe the QPRF and QMRF reporting services

    Integration among databases and data sets to support productive nanotechnology: Challenges and recommendations

    Get PDF
    Many groups within the broad field of nanoinformatics are already developing data repositories and analytical tools driven by their individual organizational goals. Integrating these data resources across disciplines and with non-nanotechnology resources can support multiple objectives by enabling the reuse of the same information. Integration can also serve as the impetus for novel scientific discoveries by providing the framework to support deeper data analyses. This article discusses current data integration practices in nanoinformatics and in comparable mature fields, and nanotechnology-specific challenges impacting data integration. Based on results from a nanoinformatics-community-wide survey, recommendations for achieving integration of existing operational nanotechnology resources are presented. Nanotechnology-specific data integration challenges, if effectively resolved, can foster the application and validation of nanotechnology within and across disciplines. This paper is one of a series of articles by the Nanomaterial Data Curation Initiative that address data issues such as data curation workflows, data completeness and quality, curator responsibilities, and metadata

    Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology

    Get PDF
    Nanotechnology and the production of nanomaterials have been expanding rapidly in recent years. Since many types of engineered nanoparticles are suspected to be toxic to living organisms and to have a negative impact on the environment, the process of designing new nanoparticles and their applications must be accompanied by a thorough exposure risk analysis. (Quantitative) Structure-Activity Relationship ([Q]SAR) modelling creates promising options among the available methods for the risk assessment. These in silico models can be used to predict a variety of properties, including the toxicity of newly designed nanoparticles. However, (Q)SAR models must be appropriately validated to ensure the clarity, consistency and reliability of predictions. This paper is a joint initiative from recently completed European research projects focused on developing (Q)SAR methodology for nanomaterials. The aim was to interpret and expand the guidance for the well-known “OECD Principles for the Validation, for Regulatory Purposes, of (Q)SAR Models”, with reference to nano-(Q)SAR, and present our opinions on the criteria to be fulfilled for models developed for nanoparticles

    Jaqpot Quattro: A Novel Computational Web Platform for Modeling and Analysis in Nanoinformatics

    Get PDF
    Engineered nanomaterials (ENMs) are increasingly infiltrating our lives as a result of their applications across multiple fields. However, ENM formulations may result in the modulation of pathways and mechanisms of toxic action that endanger human health and the environment. Alternative testing methods such as in silico approaches are becoming increasingly popular for assessing the safety of ENMs, as they are cost- and time-effective. Additionally, computational approaches support the industrial safer-by-design challenge and the REACH legislation objective of reducing animal testing. Because of the novelty of the field, there is also an evident need for harmonization in terms of databases, ontology, and modeling infrastructures. To this end, we present Jaqpot Quattro, a comprehensive open source web application for ENM modeling with emphasis on predicting adverse effects of ENMs. We describe the system architecture and outline the functionalities, which include nanoQSAR modeling, validation services, read-across predictions, optimal experimental design, and interlaboratory testing

    Chapter 11. Computational Modelling of Biological Responses to Engineered Nanomaterials

    No full text
    In this chapter, we provide an overview of recent advancements related to the safety assessment of engineered nanomaterials (ENMs) using alternatives to animal testing strategies. Advanced risk assessment computational procedures include new methods for characterizing and describing the complex structures of ENMs, development of computational models predicting adverse effects, extension of “read-across” approaches taking into account different aspects of ENM similarity, integration of various testing strategies using a “weight-of-evidence” approach, and using omics data and pathways analysis technologies to provide insights into ENM mechanisms that potentially could induce toxicity
    corecore