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Nanotechnology and the production of nanomaterials have been expanding rapidly in recent 

years. Since many types of engineered nanoparticles are suspected to be toxic to living 

organisms and to have a negative impact on the environment, the process of designing new 

nanoparticles and their applications must be accompanied by a thorough exposure risk 

analysis. (Quantitative) Structure-Activity Relationship ([Q]SAR) modelling creates 

promising options among the available methods for the risk assessment. These in silico 

models can be used to predict a variety of properties, including the toxicity of newly designed 

nanoparticles. However, (Q)SAR models must be appropriately validated to ensure the clarity, 

consistency and reliability of predictions. This paper is a joint initiative from recently 

completed European research projects focused on developing (Q)SAR methodology for 

nanomaterials. The aim was to interpret and expand the guidance for the well-known “OECD 

Principles for the Validation, for Regulatory Purposes, of (Q)SAR Models”, with reference to 

nano-(Q)SAR, and present our opinions on the criteria to be fulfilled for models developed 

for nanoparticles. 
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1. Introduction 

 

Nanotechnology and the production of nanomaterials have been expanding rapidly in 

recent years. For definitions of nanotechnology, nanomaterials and nanoparticles, readers are 

directed to the following references: (Lövestam et al., 2010; Rauscher et al., 2013). Since 

many types of engineered nanoparticles are suspected to be toxic to living organisms and to 

have a negative impact on the environment, the process of designing new and safe 

nanoparticles must be accompanied by a thorough risk analysis (Hassellov et al., 2008; Silva 

et al., 2015). 

Computational techniques, especially (Quantitative) Structure-Activity Relationship 

([Q]SAR) modelling, provide hazard estimates which are fundamental for risk assessment. 

The concept underpinning (Q)SAR (Cherkasov et al., 2014; Dearden, 2016) is that, when the 

structural characteristics (called “descriptors”) are known for a group of compounds, and the 

experimental activity data are available only for a few of them, it is possible to predict the 

unknown activities for the remaining compounds directly from the descriptors and a suitable 

mathematical model derived from algorithmic analysis of the available data. Developed 

models can be either qualitative (SAR) or quantitative (QSAR) in nature. (It should be noted 

that variations on these definitions are found in the [Q]SAR literature.) A similar approach 

can be employed to predict various physicochemical properties; such models are commonly 

known as Quantitative Structure-Property Relationships (QSPRs). Although the development 

and validation of computational models are both impossible without utilising high-quality 

experimental data, the application of (Q)SAR/QSPR may help to significantly reduce the time, 

cost, and the number of required laboratory tests (Gajewicz et al., 2012; Puzyn et al., 2009; 

Tantra et al., 2015). 
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Since the terms (Q)SAR/QSPR have traditionally referred to the modelling of the 

molecular structures of organic compounds, as opposed to nanoparticles, the abbreviation 

“nano-(Q)SAR” is often used to highlight the specificity of such models to nano-structures 

(Gajewicz et al., 2012; Puzyn et al., 2009). Alternatively, the terms Quantitative 

Nanostructure-Activity Relationships (QNAR) (Fourches et al., 2010), Quantitative 

Nanostructure-Toxicity Relationships (QNTR) (Le et al., 2013) and nano-SAR (Liu et al., 

2013b) are also used in the literature. 

In order to address the opportunities offered by modelling the toxicity and properties 

of nanoparticles, the European Commission funded five modelling projects: MODERN 

(Brehm et al., 2017), Mod-Enp-Tox (Vriens et al., 2017), PreNanoTox, MembraneNanoPart 

(Lopez et al., 2017) and NanoPUZZLES (Richarz et al., 2017) from 2013-2015 and a further 

project to assist in the management of data: eNanoMapper (Jeliazkova et al., 2015), from 

2014 – 2017, within the EU NanoSafety Cluster (https://www.nanosafetycluster.eu/). Herein, 

these projects are collectively referred to as the NanoSafety Modelling Cluster, originally 

comprising the five projects and later joined by eNanoMapper. The projects within the 

NanoSafety Modelling Cluster concentrated expertise in the development of (Q)SAR models 

and other chemoinformatic techniques for nanoparticles. This expertise confirms that nano-

QSARs/QNARs/QNTRs can be successfully used to predict the physicochemical properties 

and bioactivity of nanoparticles as well as to assist in the identification of possible 

mechanisms of toxicity at different levels of biological organisation. For example, the toxicity 

of metal oxides to the bacterium Escherichia coli (a prokaryotic system) was shown to be 

related to the release of metal cations from the nanoparticle surface, whereas their toxicity to 

human keratinocyte cells (an eukaryotic system) is mainly related to the redox properties of 

the surface of the nanoparticle, thus providing an insight into different mechanisms of action 

(Gajewicz et al., 2015). 
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  The Organisation for Economic Cooperation and Development (OECD) published a 

set of principles in 2004 (OECD, 2004) for the validation of QSAR models, along with 

detailed guidance in 2007 describing the application of the so-called “OECD Principles for 

the Validation, for Regulatory Purposes, of (Q)SAR Models” (OECD, 2007). The Guidance 

proposes that five criteria, commonly referred to as “the OECD Principles for Validation”, 

should be considered to evaluate a QSAR: (1) a clear definition of the endpoint; (2) the use of 

an unambiguous algorithm; (3) the necessity of defining the applicability domain; (4) 

calculating appropriate measures of goodness-of-fit, robustness and predictive ability; and (5), 

whenever possible, providing a mechanistic interpretation. The appropriate validation of 

(Q)SARs, according to these principles, is crucial to demonstrate their true predictive ability 

and limitations in a regulatory context. Whilst these principles may be considered generally 

applicable to all (Q)SARs, including nano-QSARs, the fact that the development of the 

original principles, and their accompanying guidance from the OECD, was based on 

consideration of QSARs for small organic molecules means there is a need to consider 

whether the guidance associated with their application requires revision and/or addition to be 

appropriately applied to the evaluation of nano-QSARs. Some of the considerations which are 

specific to, or otherwise typical for, nano-QSAR studies that prompt us to ask this question 

are as follows: (1) the challenge of representing nanomaterial structures, which affects which 

information should be provided to allow nanomaterial descriptor values to be reproduced (c.f. 

principle 2); (2) nanomaterial-specific data quality considerations (c.f. principle 1); (3) the 

typically small size of nano-QSAR datasets (c.f. principle 4). We discuss these issues in detail, 

along with appropriate literature references, in the next section of our article. This paper is a 

joint initiative of five of the EU research projects (MODERN, PreNanoTox, 

MembraneNanoPart, NanoPUZZLES and eNanoMapper), which focused on developing 

(Q)SAR methodology, and supporting resources, for nanomaterials. The aim of the paper is to 
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reconsider some of the most important aspects of the evaluation process from the perspective 

of nano-(Q)SAR models in the context of the existing OECD Principles for Validation. 

However, whilst they are discussed from a nano-(Q)SAR perspective, it should be noted that 

various suggestions made herein, as will be indicated in the text, are also applicable to QSAR 

modelling of conventional (small molecule) chemicals.  

Here it should be noted that the aim of this paper is not to be a comprehensive review of 

nano-(Q)SAR models. A variety of recommended reviews of nano-(Q)SAR models have been 

published in recent years (Burello, 2017; Chen et al., 2017; Oksel et al., 2015a; Oksel et al., 

2017; Oksel et al., 2015b; Tantra et al., 2015; Winkler, 2016; Worth et al., 2017). Some 

articles discuss, to varying degrees of detail, the application of the OECD principles to nano-

(Q)SAR models (Kar et al., 2014a; Oksel et al., 2015a; Oksel et al., 2017; Oksel et al., 2015c; 

Tantra et al., 2015; Toropov and Toropova, 2015). Our current paper discusses the relevant 

considerations, which need to be taken into account when evaluating nano-(Q)SAR models 

according to the OECD principles in greater detail than these previous works. More careful 

consideration is given to relevant issues such as data quality and reproducibility of 

computational results. Section 2 presents an in-depth discussion of the issues relating to each 

of the five principles. Section 3 summarizes some of the key questions which need to be 

answered, along with more detailed considerations which need to be taken into account, when 

evaluating nano-(Q)SAR models according to these principles and indicates how these key 

questions may be used for an initial evaluation of nano-(Q)SAR models developed, in part, by 

members of the NanoSafety Modelling Cluster. Drawing upon expertise across this cluster of 

modelling projects, section 4 concludes with some take home messages.   

 

2. Discussion on the criteria for validating Nano-QSARs 

 

2.1. A defined endpoint 
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The endpoint in a (Q)SAR is defined as “a measure of activity for chemicals made 

under specific conditions” (OECD, 2007) and refers to “any physicochemical property, 

biological effect or environmental parameter related to chemical structure that can be 

measured and modelled” (OECD, 2007). The first “OECD Principle for (Q)SAR validation” 

(OECD, 2004, 2007) states the need of using “a clear endpoint definition”. A well-defined 

endpoint is key to promote clarity regarding exactly what is being predicted by the (Q)SAR 

and to ensure that the selected endpoint is relevant for the purpose for which the (Q)SAR was 

developed and used. The OECD guidance proposes a range of specific considerations for the 

endpoint evaluation, namely whether (1) the scientific purpose, i.e. the modelled endpoint, is 

clearly defined; (2) the experimental protocol(s) used to generate the underlying data and 

other “important experimental conditions” are reported as well as the quality of the assays and 

sources for experimental error; (3) the units (supposing a numerical endpoint) of measurement 

are clearly defined; (4) the underlying data have been generated using sufficiently consistent 

experimental procedures; (5) the model has potential to (partially) address a defined 

regulatory need (i.e., the predicted endpoint has regulatory relevance) (OECD, 2004, 2007). 

In the following paragraphs, these points are discussed from the specific perspective of 

evaluating nano-QSAR models.  

Regarding the issue of addressing a regulatory need, for the purposes of this paper, this 

criterion is broadened to have greater general relevance, i.e. fitness-for-purpose for different 

possible applications of nano-QSARs, such as initial hazard screening in industry. Thus, what 

remains important is that the endpoint is relevant for the intended application of the model 

and, in keeping with this, that the exact endpoint being predicted is clear. 

Hence, in keeping with consideration (1) defined above, it is important that the 

terminology used to define the endpoint is sufficiently precise. For example the term 

“cytotoxicity” (Kar et al., 2014b; Kleandrova et al., 2014; Luan et al., 2014; Pathakoti et al., 
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2014; Puzyn et al., 2011; Toropov et al., 2012; Toropova et al., 2014; Toropova et al., 2015) 

may be considered to cover the output from a wide range of assays and a variety of cellular 

effects (Hu et al., 2009; Kroll et al., 2009; Lewinski et al., 2008; Oksel et al., 2015b) such as 

reduced viability (commonly considered cell death) (Lewinski et al., 2008), apoptosis and 

necrosis (Oksel et al., 2015b) (mechanisms of cell death) (Jin and El-Deiry, 2005), as well as 

– by some authors (Lewinski et al., 2008) – sub-lethal effects such as oxidative stress and 

inflammation or even genotoxicity. Other authors distinguish “cytotoxicity” from apoptosis 

and oxidative stress etc. (Nel, 2013). This illustrates the fact that the endpoint must be 

sufficiently described to avoid ambiguity in its interpretation. As a general rule of thumb, 

endpoint categories need to be distinguished in data and models between those that refer to 

specific measurements, e.g. different assays or specific ways of counting dead cells, and those 

that refer to groupings of biological relevance which can be measured in a variety of different 

ways, e.g. cytotoxicity. 

Clarity regarding terminology can be promoted by encouraging nano-(Q)SAR 

modellers to link their endpoint values to definitions from ontologies (Thomas et al., 2011) 

e.g. the BioAssay Ontology (BAO) (Visser et al., 2011). While the BAO definition of 

“percent cytotoxicity” (BAO_0000006) (Netzeva et al., 2005) is not itself 100% specific to a 

single way of defining cytotoxicity – in the text it lists several different assays which measure 

arguably different aspects of cytotoxicity including counting dead cells vs. different measures 

of cellular damage – if one browses down the BAO classification hierarchy, one will notice 

that there are subclasses to represent “percent apoptotic cells” (BAO_0002006) and “percent 

dead cells” (BAO_0002046) which are defined more specifically. Wherever possible, data 

should be annotated to the more specific type of endpoint, which in turn is linked to relevant 

assays, while the ontology hierarchy should capture the interrelationship between the specific 

and grouped endpoints. Modellers may then choose to combine data from different specific 
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endpoints in support of predictions of a general endpoint such as ‘cytotoxicity’, but this 

should be appropriately documented, as discussed below. Since the process of building 

ontologies requires that specific definitions are accepted by the scientific community and 

universally used, the eNanoMapper project worked towards creating an ontology specifically 

targeting this area – nanomaterial safety – including terminology for relevant assays, 

descriptors, and endpoints (Hastings et al., 2015), integrating content from BAO and other 

sources.  

One could argue that a nano-(Q)SAR endpoint, similar to those for (Q)SARs for small 

molecules, is most precisely defined if it is based on the output of a specific assay. This raises 

the question of whether or not it is appropriate to mix data obtained from different assays for, 

ostensibly, the same endpoint. Indeed, this touches upon the wider question of how to ensure 

minimal experimental heterogeneity, as per consideration (4) defined above, whilst having a 

sufficiently large number of tested chemicals for training and validating the model (Cronin 

and Schultz, 2003; Dearden et al., 2009; OECD, 2007). It has been previously argued that 

nano-(Q)SAR models should be developed using data obtained from a single source, 

supposing data for a sufficiently large number of nanomaterials were available from that 

source (Lubinski et al., 2013). However, it is recognised that this is not always a realistic 

expectation. Nanotoxicology data reported in the public domain are commonly generated 

according to a variety of different tests or, even when the same test (e.g. the Comet assay for 

genotoxicity assessment) is applied, according to different experimental systems/conditions 

(Golbamaki et al., 2015; Krug, 2014). 

The view that nano-QSARs should only be developed on data measured according to a 

single protocol under a single set of conditions is arguably reflected in the typically small 

datasets employed for nano-QSAR development (Oksel et al., 2015b). However, it is 

established in both the statistical community more broadly (Kaplan et al., 2014) and in 
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QSAR/QSPR studies in particular (Hawkins, 2004; Palmer and Mitchell, 2014) that, all else 

being equal, larger datasets support better predictive modelling and more robust validation 

statistics (see section 2.4 for more detailed discussion). Indeed, an interesting recent QSPR 

study indicated that mixing up literature data may yield models which are comparably 

predictive to models developed using data from a single experimental protocol in the same 

laboratory (Palmer and Mitchell, 2014). This suggests that it should not be assumed that data 

which are not perfectly experimentally consistent cannot be combined for modelling, albeit 

caution is still advisable. Even in the case that the inconsistency in experimental data is 

sufficient to significantly affect the ability to model merged datasets based on descriptors of 

nanomaterial structure alone, it may still be possible to merge the data via treating the 

experimental protocol variables as descriptors. Indeed, this approach has been applied in 

recent nano-QSAR studies (Cassano et al., 2016; Toropov and Toropova, 2015). Of course, in 

order to assess whether data are likely to be sufficiently inconsistent for their merging to be 

inadvisable or so that the inconsistency can be captured via treating the experimental 

variables as descriptors, it is crucial that the key experimental variables are consistently 

reported across data sources, which can be supported by use of ontologies (Hastings et al., 

2015; Marchese Robinson et al., 2015). Indeed, the wider need for minimum reporting 

standards is currently a key topic in the nanoscience community (Aberg, 2015; Marchese 

Robinson et al., 2016; Marquardt et al., 2013; Stefaniak et al., 2013). 

Regarding the units of measurement to be reported for numerical endpoints, as per 

consideration (3) defined above, the following question arises. Which dose (or concentration) 

units are most appropriate if the endpoint value in question is a dose-response or 

concentration-response statistic, e.g. an LC50 (Netzeva et al., 2005), or a lowest observed 

adverse effect level, i.e. LOAEL (Lewis et al., 2002)? Whilst the most appropriate 

dose/concentration units may be scenario-specific (Donaldson and Poland, 2013), it is 
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generally accepted that mass-based concentrations or doses are least appropriate (Cohen et al., 

2014; Donaldson and Poland, 2013; OECD, 2012). For small molecule chemicals, it is 

generally accepted that concentration response data should be expressed in terms of moles per 

litre and, indeed, some nano-(Q)SAR studies have reported concentration-response endpoints 

in moles per litre. However, strictly speaking, the notion of “moles” is not applicable for 

many nanomaterials as they are not based upon a single-molecule species. Rather, particle 

number or surface area-based concentrations (or doses) are commonly advocated (Cohen et 

al., 2014; OECD, 2012). However, converting the mass-based concentrations (or doses) to 

these, more appropriate units, requires appropriate physicochemical measurements (e.g. 

specific surface area values or density values depending upon the calculation employed) 

(Cohen et al., 2014; OECD, 2012) to be made. 

The experimental endpoint data need to be of sufficiently quality to create sound 

models, which also raises some nano-specific issues (Marchese Robinson et al., 2016). Indeed, 

given that data quality may be considered related to the degree to which the data are clearly 

defined, including in terms of metadata availability, and are free of errors (Marchese 

Robinson et al., 2016), considerations (1-3), as defined above, are related to the topic of data 

quality. One particularly key, nanospecific data quality aspect is the potential for artefacts and 

misinterpretations that may arise with a variety of nano(eco)toxicology assays (Crist et al., 

2013; Handy et al., 2012; Kroll et al., 2009; Krug, 2014; Petersen et al., 2014). Some notable 

potential problems are as follows: (1) the potential for the nanomaterial to interfere with the 

assay readout such that this readout does not accurately correspond to the nominal endpoint 

(Kroll et al., 2009; Petersen et al., 2014); (2) contamination with endotoxin or residual solvent 

(used for sample preparation) triggering toxicity that is wrongly attributed to the nanomaterial 

(Crist et al., 2013; Krug, 2014; Petersen et al., 2014). Tests to exclude the possibility of assay 

interference have been proposed (Petersen et al., 2014), along with suggested test 
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systems/assays that are expected to be free of nanomaterial interference (Kroll et al., 2009; 

OECD, 2010) and assessment of endotoxin contamination and its potential significance for 

the test system are recommended (Crist et al., 2013; Petersen et al., 2014). Whether or not 

these issues were accounted for should be reported. 

The precise identification of the test substance is also a requirement for high quality 

data (Marchese Robinson et al., 2016; Przybylak et al., 2012). In the case of nanomaterials, 

this typically, but not necessarily (Marchese Robinson et al., 2016), requires that essential key 

physicochemical properties are reported (Marchese Robinson et al., 2016; Powers et al., 2006; 

Stefaniak et al., 2013). (Under certain circumstances, suitable identifiers might be sufficient to 

determine the nanomaterial being tested (Marchese Robinson et al., 2016)). For example, in 

contrast to small molecule chemicals, nanomaterials are typically polydisperse, hence the size 

distribution needs to be reported if physicochemical characterisation is used to identify the 

nanomaterials. N.B. It should be noted that the characterisation of the nanomaterials, in terms 

of their key physico-chemical properties, may also be considered relevant to definition of the 

applicability domain (see section 2.3). High variability of measured data depending on the 

experimental conditions is an issue particularly for nanomaterials, impacting on the 

characterisation of the materials (Worth et al., 2017). 

Another consideration typically argued to be related to data quality is the adherence to 

a standardised experimental protocol. However, the most appropriate way to adapt the 

existing standardised test procedures to the specific nanomaterial issues was still under 

discussion at the time of writing (OECD, 2009, 2013a, 2014a, b). A more detailed discussion 

of data quality and completeness considerations for nanomaterials was recently published 

(Marchese Robinson et al., 2016). 

When considering all these issues, one must bear in mind that nanoparticle safety 

assessment is a relatively young discipline; hence the requirements regarding endpoints and 



  

13 

 

characterisation of data and experimental protocols, which are specific to nanomaterials, are 

still being discussed in the community. Drawing upon the preceding discussion, we propose 

that any evaluation of a nano-QSAR according to the OECD requirement for a defined 

endpoint should entail consideration of the following key questions. Is a precise definition of 

the endpoint provided (e.g. an ontology annotation)?  Are the test methods / assays, along 

with the key experimental variables, used to generate the endpoint data documented and 

relevant for nanomaterials?  Are the data “reasonably” experimentally consistent?  Are units 

provided for numerical endpoints? Have concentration / dose related units been converted 

from mass based units (e.g. into surface area based units)? Has the potential for nanomaterial 

interference with the assays been excluded? Has endotoxin or residual solvent contamination 

been assessed? Is the endpoint relevant for the intended application of the model? In 

summary, the most important requirement for providing “a defined endpoint” is the 

transparent and clear description of all relevant key parameters as discussed above, in order 

for the potential user of the nano-QSAR model to be able to judge whether the nano-QSAR 

model can be used for the intended purpose. 

 

2.2 An unambiguous algorithm 

 

The “unambiguous algorithm” principle requires that the complete structure of the 

model, as well as the exact values of all the model parameters, should be made explicit.  This 

includes adequate description of the mathematical method employed for defining the 

relationship between the descriptors of the structure and the “activity” endpoint of interest, as 

well as how descriptors are calculated (or measured). The complete dataset of substances, 

end-point and descriptor values, together with clearly defined training and test sets should be 

provided to the user. The remainder of this section is divided into subsections concerned with 

critical considerations which need to be taken into account when assessing compliance with 
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the principle of an “unambiguous algorithm”: modelling algorithms (section 2.2.1), 

descriptors (section 2.2.2), variable selection (section 2.2.3) and model reproducibility 

(section 2.2.4). 

 

2.2.1. Modelling algorithms 

A (Q)SAR model is built via applying a statistical or machine learning algorithm to a 

training set, comprising a matrix of descriptor values with associated endpoint values. Certain 

algorithmic parameters, sometimes known as “hyperparameters”, which determine how the 

algorithm generates a model from this training set matrix may be tuned using internal 

validation data. With regard to data mining and machine-learning methods used to derive 

nano-(Q)SARs, there are no major differences compared to classical (Q)SAR analysis, 

therefore all the well-established algorithms (including but not limited to multiparametric 

linear regression, partial least squares, different types of neural network architectures, support 

vector machines, decision trees etc.) can also be employed (Fourches et al., 2010; Mitchell, 

2014). Recently, there has been renewed interest in the QSAR community regarding artificial 

neural networks, especially in “deep learning” (Baskin et al., 2016). However, given that it 

has been suggested that “deep learning” is particularly suited for analysis of large datasets 

(Baskin et al., 2016), whether it is suitable for the small datasets typically considered in nano-

QSAR analyses (Oksel et al., 2015b) is perhaps questionable. 

 

2.2.2. Descriptors 

The issue of the descriptors to be employed for nano-QSARs and the representation of 

the nanomaterial structural information from which these are derived represents the major 

difference between nano-QSARs and most QSARs, which are designed for small molecules 

(Cherkasov et al., 2014; Dearden, 2016). Although a large number (in the order of thousands) 

of (Q)SAR molecular descriptors have been defined so far (Consonni and Todeschini, 2010), 
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they are often inadequate to express the supra-molecular pattern governing the activity and 

properties of nanomaterials. However, here it should be noted that molecular descriptors may 

be used to build nano-(Q)SAR models under certain circumstances. For example, they have 

been successfully applied for the scenario in which all modelled nanoparticles comprise 

exactly the same core and variation arises from the molecular structure of the small molecule 

surface modifier, with descriptors calculated solely for this modifier (Kar et al., 2014a). Since 

nanomaterials based on fullerenes (e.g. C60) and their derivatives are based on well-defined 

molecular structures, it could be argued that molecular descriptors are adequate for modelling 

their effects. However, these nanomaterials may exist as agglomerates of fullerene molecules 

(e.g. “nC60” particles), with characteristics likely to depend upon sample preparation, 

including the dispersion protocol, rather than being solely determined by the fullerene 

molecular structures (Astefanei et al., 2015). It should be noted that molecular descriptors, 

calculated from SMILES representations (Weininger, 1988), have been applied for modelling 

of a variety of kinds of nanomaterials (Singh and Gupta, 2014), even though the 

nanomaterials in question cannot truly be represented by a SMILES string.   

One of the major challenges in the derivation of nano-(Q)SAR models is the fact that 

nanomaterials are typically not distinct chemical structures, but rather substances of more 

complicated structures, which often comprise core chemistries, multiple coatings and linkages 

between components (encapsulation, entrapments, amide linkages, etc.) of varying size 

distributions (Thomas et al., 2013). The extension of the “similar compounds have similar 

properties” principle (Johnson and Maggiora, 1990), which underpins QSAR analyses 

(Golbraikh et al., 2014; Hansch and Fujita, 1964), to nanostructures is not trivial. Similarity of 

nanoparticles must accommodate many aspects other than chemical similarity, such as 

structural similarity including primary size, size distribution, shape, porosity and crystal 

structure (Burello and Worth, 2011; Gajewicz et al., 2012; Le et al., 2013; Puzyn et al., 2009), 
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whilst the potential presence of multiple coatings can further modify the material properties 

and should be taken into account when addressing nanoparticle similarity or defining their 

identity. Furthermore, the exchange between agglomerated and dispersed forms, as well as the 

formation of lipid and protein coronas, whose composition can be considered as a biological 

fingerprint of a nanoparticle, are also factors that define the identity of the nanomaterial for 

the toxicity assessment purposes (Walkey et al., 2014). Recent reviews discuss the 

relationship between nanomaterial structures / physicochemical characteristics and their 

biological effects in greater detail (Bai et al., 2017; Oksel et al., 2017). 

By definition, the nanomaterial is presented on a scale of at least one nanometer 

(Lövestam et al., 2010; Rauscher et al., 2013), which implies that a nanoparticle contains 

from dozens to billions of atoms. One can mention at least five features that characterize the 

nanomaterial and are not present at the level of single molecule or pure chemical. Firstly, the 

processing of nanomaterials often involves surface modification of different chemical nature 

to improve the dispersion stability – i.e., to prevent nanoparticles aggregation and deposition 

on the walls of the sample cells or container. Therefore, the molecular structure of the 

material that interacts with biomolecules is often different to the reported core nanomaterial. 

Secondly, whilst being transported to the tissue, the nanoparticles may come in contact with 

biomolecules of the dispersion medium, as the nanoparticles are often dispersed in surfactant 

or proteins solutions. Therefore, the properties of the core nanomaterial itself may be 

irrelevant for the (Q)SAR, if the co-solutes are not specified. Thirdly, the structure of a 

nanomaterial is not fully defined by chemistry alone. The nano-bio interactions may depend 

on molecular packing (e.g., crystalline or amorphous phase), size and shape etc. Fourthly, 

even when the main material is defined, a single nanoparticle might contain a macroscopic 

number of impurities or dopants. Fifthly, nanomaterials are typically not a single entity or 

even a small set of discrete entities. Rather, they may exhibit “polydispersity” in terms of a 
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range of properties (Miller and Hobbie, 2013). For example, a nanomaterial may comprise a 

number of particles with the same chemical composition but distributed across a range of 

different sizes (Powers et al., 2007). 

Thus, a meaningful nano-(Q)SAR should arguably include the information about the 

surface chemistry, surface charge, crystalline structure, particle size and shape, the delivery 

vehicle or co-solute, and the dopants/impurities in addition to the chemical content of the 

particle. Ideally, information about the particle size distribution and, if relevant, other forms 

of “polydispersity” should also be captured. This means, in practice, that more than one 

type/system of descriptors is often required for nano-(Q)SAR modelling. Moreover, the 

descriptors can be divided into two classes: “intrinsic” and “extrinsic” properties. The first 

class contains properties that are independent on the external conditions (e.g., on pH, the 

presence of proteins), whereas the second class describes changes in the structure dependent 

on the changing environment (Mikolajczyk et al., 2015). Taken together, these parameters 

make an analogue of a pure chemical in a standard molecular (Q)SAR. By this we mean that 

the combined set of “intrinsic” and “extrinsic” properties give rise to biological effects and, if 

suitably characterised using descriptors, can serve as the basis of a nano-QSAR. 

Given this structural complexity, it follows that representation formats for 

nanomaterials are definitely more complicated than those of single-molecule chemicals, and 

consequently this subject deserves separate and careful assessment. One such proposed format 

is the ISA-TAB-Nano Material file and its associated data files (Marchese Robinson et al., 

2015; Thomas et al., 2013). The format used to represent the nanomaterial, even before 

starting any descriptor calculation, may have huge impact on the final model and therefore 

should be carefully specified. 

Novel and more appropriate types of nano-descriptors are being developed, such as 

features derived from quasi-SMILES, encoding physicochemical properties and/or 
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experimental conditions using string labels (Cassano et al., 2016; Toropov et al., 2015; 

Toropov and Toropova, 2015; Toropova et al., 2011; Toropova et al., 2015), descriptors 

derived from molecular graph or the graph of atomic orbitals theory (Puzyn et al., 2009) and 

features derived from quantum-mechanical (QM) calculations (e.g. electron distribution, 

ionisation potential, electron affinity, surface reactivity, band gap, electronegativity and 

enthalpy of formation) (Gajewicz et al., 2015; Puzyn et al., 2011). Mechanistic justification 

for these QM descriptors is provided in the cited references (Gajewicz et al., 2015; Puzyn et 

al., 2011). Other relevant descriptors that cover the biological activity of nanomaterials, such 

as protein adsorption energies, can be calculated using coarse-grain modelling (Lopez and 

Lobaskin, 2015). 

The exact method and the software used to derive these descriptors should be stated 

explicitly. For example, MOPAC (http://openmopac.net/) is a popular semi-empirical 

quantum chemistry program for deriving QM descriptors. However, in order to reproduce the 

results, the complete crystal structure and the optimised geometry of the nanoparticle, or 

representative cluster built from the bulk crystal structure, must be available (Gajewicz et al., 

2015). Additionally, the exact QM method used to perform the calculations should be 

provided, since different methods (e.g., PM3, PM6, PM7) may lead to substantially different 

results. Furthermore, semi-empirical models, whilst allowing for descriptors to be calculated 

relatively quickly, may lead to serious errors, in particular if the considered derivatives 

include metals. (Nonetheless, nano-QSAR investigations suggest descriptors derived from 

semi-empirical calculations can still yield reasonable models (Gajewicz et al., 2015; Puzyn et 

al., 2011)). Thus, it is advisable to validate the semi-empirical results by using rigorous ab 

initio methods (e.g. CCSDT(2), CASSCF/CASPT2) and reasonably extended basis sets (Coe 

et al., 2013; Serrano-Andres et al., 2009).  
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Experimentally derived properties also serve as suitable descriptors for developing 

nano-(Q)SARs, as they are especially useful for expressing size distribution, agglomeration 

state, shape, porosity and irregularity of the surface. A potentially useful source for deriving 

structural information of nanoparticles is images taken by scanning microscopy (SEM), 

transmission electron microscopy (TEM), or atomic force microscopy, where descriptors are 

calculated using image analysis techniques (Gajewicz et al., 2015). Other experimental data 

which may provide descriptors for nano-QSAR include zeta potential measurements (Cassano 

et al., 2016). To ensure consistency with the requirements of the second OECD Principle, the 

experimental protocol, the laboratory conditions and the algorithms used to calculate those 

descriptors should be provided in detail when experimentally derived descriptors are used in 

nano-(Q)SARs. This is demonstrated in the following examples:  

• The size of nanomaterials can be determined by different experimental methods. TEM 

typically measures the primary size of the nanoparticles (Murdock et al., 2008), but 

Dynamic Light Scattering (DLS) measures the “hydrodynamic diameter” which is an 

effective diameter calculated based on the assumption that the particles are spherical 

(Baalousha and Lead, 2012; DLA, 2011). Indeed, the size measured via DLS may also 

reflect the presence of aggregates/agglomerates (DLA, 2011) hence may be 

significantly larger than primary size values. 

• Zeta potential is an important characteristic of the nanoparticle surface that determines 

the long-term stability of the nanoparticle dispersions. Zeta potential measurement 

techniques (e.g., light scattering and agarose gel electrophoresis) allow one to evaluate 

the surface charge of nanoparticles in the medium. The exact conditions under which 

zeta potential is measured should be available, as various factors (notably medium 

composition, sample pH, serum incubation) can significantly affect the measured 

values (Cho et al., 2012; Walkey et al., 2014; Worth et al., 2017). 
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• The composition of the protein corona may be modified when the nanoparticles move 

from one compartment to the other. The biological fluid, in which the corona 

composition is measured, should be exactly known (Le et al., 2013). 

Interestingly, experimentally-derived descriptors can be also used for calculating new types of 

theoretical descriptors, such as descriptors based on the “Liquid-Drop Model” (LDM 

descriptors) (Sizochenko et al., 2014). The model can be used in order to encode nanoparticle 

aggregates in a solution. In LDM, the aggregate is represented as a spherical drop, where 

elementary nanoparticles are densely packed and the density of the aggregate is equal to the 

mass density. Then, the five following descriptors can be easily calculated: Wigner-Seitz 

radius (the minimum radius of the interactions between the elementary nanoparticles), the 

number of nanoparticles in the aggregate, the number of nanoparticles on the surface, the 

surface-to-volume ratio and the aggregation parameter. It is worth mentioning that the same 

scheme can be used to describe volume-related features of single nanoparticles. In such a 

case, a nanoparticle is treated as a cluster (“aggregate”) of atoms (i.e. LDM represents a single 

nanoparticle built up from atoms as the basic elements) (Sizochenko et al., 2014). 

 

2.2.3. Variable selection 

In order to select the descriptors employed for building a nano-QSAR model, a combination 

of mechanistic expertise and statistical variable selection may be employed, with the latter 

commonly referred to as “feature selection”. Feature selection may be appropriate for two key 

reasons: (1) reducing the number of descriptors might avoid overfitting the training data, a 

scenario in which the model parameters are adjusted to predict the training set endpoint values 

well at the expense of true predictivity on data not seen during training; (2) a smaller number 

of descriptors makes expert assessment of the mechanistic basis for the model (see section 

2.5) more manageable (Cherkasov et al., 2014).  
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A commonly quoted heuristic in the QSAR literature, attributed to the work of Topliss and 

Costello (Topliss and Costello, 1972), is that the ratio of compounds : descriptors should be 

greater than or equal to 5:1, at least when using simple linear regression methods (see section 

2.2.1) (Cherkasov et al., 2014; Dearden et al., 2009). In the case of the typically small datasets 

used in nano-QSAR studies (Oksel et al., 2015b), sometimes of the order of 20 instances or 

less, this would imply very few descriptors should be considered. Indeed, according to the 

analysis of Topliss and co-workers, the probability of finding chance correlations in 

traditional multiple linear regression models is related to the total number of descriptors 

evaluated, via statistical procedures, rather than the final number included in the model 

(Topliss and Costello, 1972; Topliss and Edwards, 1979), so it cannot reasonably be claimed 

that a nano-QSAR model is compliant with the so-called Topliss and Costello rule if the ratio 

is reached via statistically evaluating a larger set of descriptors for inclusion in the model. 

However, it should be noted that the seminal work of Topliss and co-workers (Topliss and 

Costello, 1972; Topliss and Edwards, 1979) was based on specific variable selection 

approaches in the context of traditional multiple linear regression analysis and it cannot be 

assumed that their findings are necessarily applicable to all other techniques. Furthermore, 

these authors did not actually propose a hard and fast rule. Hence, rather than condemn a 

nano-QSAR model as worthless if it violates the so-called Topliss and Costello rule, it is more 

appropriate to be judicious regarding the descriptors considered for evaluation on mechanistic 

grounds, where possible, and employ rigorous statistical techniques, e.g. ‘external cross-

validation’ (Hawkins, 2004; Low et al., 2011) and y-scrambling (Rucker et al., 2007) 

discussed in section 2.4, in combination with assessment of the mechanistic plausibility of 

obtained correlations (see section 2.5) to ascertain whether a nano-QSAR model really is 

based on chance correlations and cannot be trusted to make reliable predictions for unseen 

data.  
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A variety of approaches for statistical feature selection exist (Ferreira and Figueiredo, 

2012; Guyon and Elisseeff, 2013). A number of these are based on the so-called “relevance 

and redundancy” criteria (Ferreira and Figueiredo, 2012) that, in the terminology of QSAR, a 

good set of descriptors should be well correlated with the modelled endpoint and poorly 

correlated with each other. However, different measures of variable association might give 

different results and descriptors which appear highly correlated according to some measures 

may not be truly redundant (Guyon and Elisseeff, 2013). Statistical feature selection remains 

an active area of research. 

If feature selection algorithms are applied, both the original and the reduced sets of 

data should be made available to the user, including the rules and mathematical formulae used 

to select, prioritise or cluster the data. Moreover, values of the steering parameters for the 

algorithms (if any) should be provided in detail. 

Feature ranking methods, which rank descriptors according to their relevance to 

modelling the endpoint as may be estimated using a variety of techniques (Ferreira and 

Figueiredo, 2012), might be used for the mechanistic interpretation of models. For example, a 

mechanistically comprehensible descriptor found to show high (positive) association with an 

endpoint could yield insights into the structural factors driving the modelled endpoint.    

 

2.2.4. Model reproducibility 

Reproducibility of the models, including easy transfer and exchange across different 

platforms, is an important issue in QSAR modelling (Tetko et al., 2017), which also applies to 

the case of nano-QSAR analysis (Helma et al., 2017). Indeed, the reproducibility of 

computational science more generally has been a key concern in the recent scientific literature 

(Editorial, 2014). 

A variety of formats exist for documenting QSAR models, for the purpose of creating 

model-specific records in online or in-house repositories, in order to facilitate their reuse. 
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These formats and repositories were recently reviewed (Tetko et al., 2017). One such format, 

established over a decade ago by the European Commission’s Joint Research Centre (JRC), is 

the (Q)SAR Model Reporting Format (QMRF), designed to document QSAR models in 

keeping with the OECD principles [(Pavan and Worth, 2008); http://qsardb.jrc.it/qmrf]. In a 

recent project by JRC it has been used in a format extended for nanomaterials to compile an 

inventory of currently existing nano-QSARs/QSPRs (Worth et al., 2017). The eNanoMapper 

project developed a resource for generating QMRF reports for nano-QSAR models (Drakakis 

et al., 2016). However, this format only supports documentation of human readable, free text 

descriptions of the relevant details required to reproduce the models, along with encouraging 

links to relevant software and structural files. In practice, this might not be sufficient to 

(easily) reproduce the model. The QsarDB format [(Ruusmann et al., 2014, 2015; Tetko et al., 

2017); http://qsardb.org], in contrast, seeks to document the QSAR models in a machine-

readable fashion, designed to be readily parsed by appropriate software tools to reproduce the 

models. Notably, the QsarDB format uses the Predictive Model Markup Language [(Tetko et 

al., 2017); http://dmg.org/pmml/v4-3/GeneralStructure.html], where applicable, to represent 

the structure of the model itself in a software independent machine-readable fashion. This is 

complemented with information about the descriptors, endpoint values and chemicals in the 

training and test sets. For example, the nano-QSAR model of Puzyn and co-workers for 

inorganic nanoparticle cytotoxicity (Puzyn et al., 2011) has been recorded within the QsarDB 

database (Piir, 2014), with the structure of the final derived regression model documented 

using PMML.  

However, this example (Piir, 2014) also highlights potential challenges for 

representing nano-QSAR models in this fashion. It is implied that the nanoparticles for which 

descriptors are calculated can be represented using a CAS number, which is clearly 

inadequate for describing nanomaterials, as opposed to small molecule chemicals. Future 
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work should consider whether the existing model reporting formats can be supplemented with 

links to suitable representations of nanomaterial structures, e.g. based on the Material file of 

ISA-TAB-Nano and linked data files (Burello, 2017; Marchese Robinson et al., 2015; 

Thomas et al., 2013), to better support the reproducibility and re-use of nano-QSAR models.    

The JaqPot Quattro (JQ) nanomaterial web modelling platform (Chomenidis et al., 

2017) , developed in the context of the eNanoMapper project, is linked to the eNanoMapper 

database (Jeliazkova et al., 2015), which integrates diverse and heterogeneous information to 

adequately represent complex nanomaterial structures.  Among other functionalities, JQ 

facilitates the automatic creation of reproducible nanoQSAR models in the form of ready-to-

use web resources, that can be accessed either through the system API or through a user-

friendly interface. Additionally, JQ creates PMML representations of the produced 

nanoQSAR models. Model validations and end-point predictions are performed either by 

feeding data from the eNanoMapper database or by manually entering the descriptor values.  

For example, the model developed by Gajewicz co-workers for predicting log(1/LC50) toxicity 

to the human keratinocyte cell line (HaCaT) cell line (Gajewicz et al., 2015) has been 

generated using the JQ functionalities and is offered to the community as a web resource and 

application (http://www.jaqpot.org/m_detail?name=gaj-18-linear).    

 

2.3. A defined domain of applicability 

 

The OECD guidance defines the “applicability domain” as follows (OECD, 2007): 

“The applicability domain of a (Q)SAR model is the response and chemical structure space in 

which the model makes predictions with a given reliability”. In this definition, chemical 

structure can be expressed by physicochemical and/or fragmental information, and response 

can be any physicochemical, biological or environmental effect that is being predicted”.  
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Thus, the ultimate purpose of defining the “domain” is to ensure the model is not used 

to make predictions for chemicals for which the predictions are expected to be unacceptably 

unreliable (Gadaleta et al., 2016; Hanser et al., 2016). However, what this is interpreted to 

mean in practice varies considerably and there are a plethora of different approaches to 

characterising the applicability domain (Hanser et al., 2016). Since QSAR models are 

obtained using statistical algorithms based on the observed trends within the training set, there 

is no reason to expect the relationships they capture to be applicable to regions of “chemical 

space” lying outside the training set chemicals. Hence, various approaches to defining the 

applicability domain are based on ensuring the model does not extrapolate outside the 

chemical space of the training set in terms of relevant descriptors (Hanser et al., 2016). This 

might be quantified in terms of a “leverage” threshold, as employed for applicability domain 

characterization for one of the nano-QSAR models of Puzyn and co-workers (Puzyn et al., 

2011). However, a variety of different kinds of information might be considered when 

evaluating the applicability domain, including direct estimations of the uncertainty in 

individual predictions, coupled with a suitable threshold for rejecting a prediction as being 

unacceptably unreliable (Hanser et al., 2016). It should be understood that these seemingly 

disparate approaches are all concerned with the central question underpinning the concept of 

an applicability domain: is the prediction returned for this new chemical (or, in the context of 

nano-QSARs, nanomaterial) of acceptable reliability, or should it be rejected? Nonetheless, it 

should be noted that Hanser et al. (Hanser et al., 2016)  have proposed breaking down this 

assessment into a multi-step decision framework, based upon consideration of different kinds 

of information at each stage: firstly, decide whether the model can be applied at all to make a 

prediction for the current use case (applicability assessment); secondly, decide whether the 

prediction is reliable enough for the current use case (reliability assessment); finally, decide 

whether a clear decision can be made based on the prediction (decidability assessment).  
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The recent QSAR literature has increasingly focused on approaches which seek to 

directly estimate the reliability of predictions for new chemicals (Dragos et al., 2009; Hanser 

et al., 2016; Lindh et al., 2017; Sushko et al., 2010), investigating a variety of measures 

reflecting the predictive error: standard deviation calculated from the ensemble of models 

(Tetko et al., 2008), bagged variance (directly available from Random forest models), 

estimating the error model of a machine learning algorithm via another machine learning 

algorithm (Sheridan, 2013), Kullback-Leibler (K-L) divergence probability distributions 

(Wood et al., 2013), local estimates of error (Clark, 2009; Sahlin et al., 2014; Sheridan, 2013) 

or confidence (Helma, 2006), sensitivity analysis and most recently, conformal prediction 

(Lindh et al., 2017; Norinder et al., 2014). An overview of the importance of and methods to 

characterize uncertainty is provided in a series of recently published contributions    (Dragos 

et al., 2009; Hanser et al., 2016; Iqbal et al., 2013; Lindh et al., 2017; Sahlin, 2014; Sahlin et 

al., 2013; Sushko et al., 2010). The current trend of moving away from similarity as an 

assumed measure of applicability domain and predictivity (Sheridan et al., 2004) through 

adding additional metrics (Keefer et al., 2013; Sheridan, 2012) and finally realising that 

similarity is redundant (Sheridan, 2013), reflects a view that the essential need is not 

delineating the “domain”, but being able to estimate the uncertainty of predictions. 

In keeping with the preceding comments regarding the potential need to take account 

of a variety of different kinds of information when assessing the applicability domain, another 

key question to ask is the following one: is the compound in the applicability domain of the 

model in terms of its mechanistic and metabolic profile? This shifts the weight of the “domain” 

problem from purely statistical analysis to the mechanistic / metabolic definition of 

applicability domain. These questions are also directly related to the mechanistic 

interpretation of the model; the modeller assumes that a given combination of descriptors has 

a concrete meaning in the context of the studied toxicity mechanism. Thus, the assumed 



  

27 

 

mechanism, or set of mechanisms in the case of a non-linear modelling technique which is 

able to model toxicity data arising from multiple mechanisms, should be the same for training 

nanoparticles and nanoparticles for which the predictions are made. Regarding whether the 

metabolic profile, which is linked in turn to the mechanism of action, for a new nanomaterial 

reflects the metabolic profile of the nanomaterials in the training set, it should be 

acknowledged that this information may not be available in practice, yet may become 

increasingly available in the future (Lv et al., 2015). 

Current (Q)SARs for nanomaterials mostly use descriptor-based approaches to 

applicability domain estimation (Gajewicz et al., 2012; Gajewicz et al., 2015; Liu et al., 

2013b; Puzyn et al., 2009; Puzyn et al., 2011). However, we can make the following key 

recommendations. Firstly, we recommend statistical approaches to directly estimating the 

prediction reliability which were discussed above (e.g. a conformal prediction framework 

(Lindh et al., 2017)). Secondly, we make the following key recommendations which are 

specific to nano-QSAR modelling:  

• If a nano-(Q)SAR model is specifically developed for a certain type of nanostructure 

(for example fullerenes, carbon nanotubes, metal oxides etc.), the AD of the model 

may be considered limited to this type of nanomaterial. 

• A single nanostructure is often composed of multiple different components (e.g. core 

and coating). Theoretical features or molecular fragments can be obtained in this case 

for all different components and used as descriptors in a nano-(Q)SAR model.  In the 

process of examining the similarity of a query substance to the training set, 

comparisons should be made among equivalent components, i.e. the core of the new 

substance should be compared against core components in the training set and the 

same should happen for the coatings, taking into account the order of coatings in the 

formation of the nanomaterials.  
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• When experimental measurements are used as descriptors, the experimental protocols 

and conditions for measuring the descriptors in the query nanostructure and the 

training set should be sufficiently consistent. 

• Data on the regulation of genes, production of metabolites, interactions with all 

relevant proteins, such as information on the protein corona (i.e., proteins that are 

adsorbed onto the surface of nanoparticles), etc. (collectively known as “omics” data) 

can be used as quantitative experimental descriptors. Furthermore, they can uncover 

fundamental mechanisms of nano-bio interactions and be used for defining the 

mechanistic domain of the model (Walkey et al., 2014). Again, experimental 

procedures and biological fluids for obtaining “omics” data should not differ 

significantly between query substances and the training set.  

Compared to classical (Q)SAR modelling, it seems more important to achieve a 

balance between the level of confidence in the predictions of a nano-(Q)SAR and its scope. 

For example, should a substance with similar core, but dissimilar coatings to those present in 

the training set (or vice versa) automatically be excluded from the applicability domain? Is an 

in silico prediction totally unreliable if experimental structural descriptors (such as size or 

shape) are measured under different experimental protocols? (A cautious response would to 

be say, “yes”, however it is not necessarily the case that the differences in, say, size measured 

via two slightly different protocols are sufficiently large to significantly affect the model 

predictions. Hence, this question should ideally be evaluated empirically for different 

scenarios.) The challenge for the nano-(Q)SAR research community is to develop new 

methods for defining the applicability of a model, taking into account the above 

considerations, in order to broaden the applicability domain without compromising the 

reliability of predictions. 
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2.4. Appropriate measures of goodness-of-fit, robustness and predictivity for 

nanomaterial models 

 

The fourth OECD Validation Principle (OECD, 2007) expresses the need to perform 

statistical analysis to establish the performance of a model, which consists of an internal 

validation process (i.e., measures of goodness-of-fit and robustness) followed by the external 

validation (i.e., measures of predictivity). The statistical validation techniques described in 

this subsection should be considered in combination with any knowledge about the 

applicability domain of the model, since the choice of nanomaterials during model 

development and validation strongly affects the assessment of performance. 

Predictions for nanomaterials in the training set, made using the final model derived 

from the whole training set, can be used to assess the goodness-of-fit of the model, which is a 

measure of how well the model accounts for the variance of the response in the training set 

and, most importantly, whether the model is statistically significant. This type of error 

estimate is known as the apparent error rate. It will generally suffer from substantial 

optimistic bias, since many algorithms can fit a given training set perfectly or near perfectly, 

and thus yield an apparent error of zero or near zero. A model that is not statistically 

significant, or that is significant but of poor fit, cannot be expected to be useful for predictive 

purposes.  

The robustness of a model refers to the stability of its parameters and consequently the 

stability of its predictions when a perturbation (e.g. deletion of one or more nanomaterials) is 

applied to the training set, and the model is regenerated from the perturbed training set. If the 

model is not robust to small perturbations in the training set, it is unlikely to be useful for 

predictive purposes. 

Predictions for nanomaterials in the test set(s) are used to assess the predictivity 

(predictive ability, predictive capacity, or predictive power) of a model, which is a measure of 
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how well the model can predict new data not used during model development. N.B. Certain 

training set resampling techniques, discussed in section 2.4.1, may also be considered as 

internal validation, albeit if applied with care may avoid optimistically biased performance 

estimates, e.g. so-called ‘external cross-validation’ (Hawkins, 2004; Low et al., 2011)  

In order for a statistical model to be useful for predictive purposes, it should be 

developed from a sufficiently large and representative amount of information regarding the 

biological activity and should only contain relevant variables. A variety of statistical 

validation techniques are available for assessing the goodness-of-fit, robustness and 

predictivity of models, and a variety of statistics are routinely used to express these aspects of 

model performance. However, information related to nanosafety is usually found in the form 

of small (i.e. limited number of samples) datasets (Oksel et al., 2015b). It is commonly known 

that the smaller the number of samples available in the training/test data sets, the less reliable 

the error rate estimate will be.  

 

2.4.1. Statistical validation techniques 

A number of statistical validation techniques can be used to assess the predictive 

ability of a QSAR model based upon resampling or permuting the available data used to build 

the final model. (Resampling techniques entail rebuilding the model on subsets of the data 

and evaluating on the remaining data, as explained below for different techniques.) In 

principle, these techniques are equally applicable to nano-QSAR models although the 

typically small size (Oksel et al., 2015b) of nano-QSAR datasets makes certain considerations 

particularly pertinent, as will be explained below. The most popular ones are described next; 

more extensive description of the statistics and validation techniques can be found elsewhere 

(Alexander et al., 2015; EChA, 2008; Worth et al., 2005). 

The training/test set splitting is a validation technique based on the splitting of the 

dataset into a single training set and a test set, unlike the resampling techniques described 
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below. The model is derived from the training set and the predictive power is estimated by 

applying the model to the test set. The splitting is performed by either randomly or 

systematically (e.g., taking every third compound from the set sorted according to the 

descending endpoint value) selecting the instances (i.e. nanomaterials in the current context) 

belonging to the two sets. 

Cross-validation (CV) is the most common resampling validation technique, where a 

number of modified datasets are created by deleting one or a small group of nanomaterials 

from the data in such a way that each nanomaterial is removed away once and only once. 

From the original dataset, a reduced dataset (i.e., training set) is used to develop a partial 

model, while the remaining data (i.e., test set) are used to evaluate model predictivity (Efron, 

1983). The simplest cross-validation procedure is the leave-one-out (LOO) technique, where 

each nanomaterial is removed, one at a time. Using this method, given n nanomaterials, n 

reduced models are calculated, each of these models is developed with the remaining n-1 

nanomaterials and used to predict the response of the deleted nanomaterial. The averaged (or 

pooled, i.e. aggregated across all n predictions) performance of the n reduced models is 

reported as the LOO cross-validated performance. Other cross-validation procedures, such as 

the leave-many-out (LMO) technique, try to introduce a larger perturbation in the dataset by 

removing more than one nanomaterial at each step. In K-fold cross-validation, the training set 

is divided into K sets of approximately equal size, each one being used in turn as a test set for 

evaluation of models build on the remaining data. 

Bootstrap resampling or bootstrapping is another technique to perform statistical 

validation (Braga-Neto and Dougherty, 2004; Wehrens et al., 2000). In a typical bootstrap 

validation, k groups of size n are generated by a repeated random selection, with replacement, 

of n nanoparticles from the original dataset. For any one of the k groups, some of these 

nanoparticles can be included in the same random sample several times, while other 
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nanoparticles will never be selected. Each bootstrap sample is treated as a training set, used to 

build the model, whilst the corresponding test set is the set of nanoparticles not selected for 

the bootstrap sample. This procedure of building training sets and test sets is repeated many 

times to obtain significant performance statistics. It should be noted that different variations, 

meaning different ways of estimating predictive performance, of the basic premise exist 

(Braga-Neto and Dougherty, 2004). 

Regarding which resampling techniques, whether a variant of cross-validation or 

bootstrap resampling, are most appropriate for evaluation of the typically small (Oksel et al., 

2015b) datasets used in nano-QSAR studies, the discussed techniques may be considered to 

have various strengths and weaknesses. It has been argued that, for small datasets, cross-

validation is preferable to using a single partition into training and test sets, as the cross-

validation estimate of model performance is likely to be more reliable (Hawkins, 2004; 

Hawkins et al., 2003). It has further been argued that cross-validation may even underestimate 

predictive performance (Hawkins et al., 2003). Regarding the suitability of different cross-

validation schemes for small datasets, cross-validation schemes, especially the LOO approach, 

have been suggested to suffer from considerable variance and can yield outliers which are 

highly misleading as to the true predictive performance (Braga-Neto and Dougherty, 2004). 

(However, it has elsewhere been suggested that LOO estimators are preferrable for small 

datasets (Hawkins, 2004)). Bootstrap estimators are suggested to be more robust, albeit to 

produce more biased results (Braga-Neto and Dougherty, 2004). Finally, it should be noted 

that heuristic guides to the minimum size of the datasets required for reliable modelling 

results, especially for nanomaterials, have been proposed elsewhere (Lubinski et al., 2013). 

Y-scrambling or response permutation testing is another widely used technique to 

check the robustness of a model, and to identify models based on chance correlation, i.e. 

models where the independent variables (descriptors in this context) are correlated to the 
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response variable (the endpoint in this context) by chance, within the available data. The test 

is performed by calculating the quality of the model obtained after randomly modifying the 

sequence of the response vector (e.g. the vector of measured biological activities for each 

nanomaterial), i.e. by assigning to each nanomaterial a response randomly selected from the 

true set of responses (Lindgren et al., 1996). If the original model has no chance correlation, 

there is a significant difference in the quality of the original model and that associated with a 

model obtained with random responses. The procedure is repeated many times. In order for 

Y-scrambling to be valid, the ‘entire’ modelling protocol (including statistical selection of 

descriptors and algorithmic parameters, if applicable) should be repeated each time (Lindgren 

et al., 1996; Rucker et al., 2007) 

Finally, it should be noted that the techniques described in this section (2.4.1) are also 

advocated as means of assessing model robustness (Chirico and Gramatica, 2011, 2012; 

Golbraikh and Tropsha, 2002; Gramatica, 2007, 2013). 

 

2.4.2. Statistics for assessing goodness-of-fit and predictivity of regression models 

Regression models are mathematical models, linear or non-linear, that attempt to 

numerically explain the observed values of a (biological activity) endpoint variable in terms 

of several independent or predictor variables. 

To assess goodness-of-fit, the coefficient of multiple determination, R
2
, is calculated 

for the training set. R
2
 estimates the proportion of the variation of the endpoint variable that is 

explained by the model. However, the value of R
2
, for the training set, can generally be 

increased by adding additional predictor variables to the model, even if the added variable 

does not contribute to reduce the unexplained variance of the dependent variable. This can be 

avoided by using other statistical parameters such as the adjusted R
2
 adjusted for degrees of 

freedom, R
2

adj, or the explained variance in prediction, Q
2
. In contrast to R

2 
for the training set, 
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the values of R
2

adj and Q
2
 do not increase if an added variable to the equation does not reduce 

the unexplained variance (Massart et al., 1997). 

The strengths and weaknesses of R
2
 as a measure of goodness-of-fit and of assessing 

predictive power for QSAR models were recently discussed (Alexander et al., 2015). It should 

be noted that, when applied as a measure of true predictive performance on an external test set 

(section 2.4.4), there is no need to adjust the statistic according to the number of descriptors 

used.  

From the calculated and observed dependent variable values, the standard error of 

estimate, s, can be obtained. The standard error of estimate measures the dispersion of the 

observed values, and a smaller value of s may indicate a higher reliability of the prediction. 

However, a standard error of estimate smaller than the experimental error of the biological 

data is an indication of an overfitted model (Wold et al., 1984). 

Other recent articles also present detailed evaluations of a range of statistics for 

characterising the predictive power of QSAR models (Gramatica and Sangion, 2016; Roy et 

al., 2017; Roy et al., 2016; Todeschini et al., 2016). Likewise, it has elsewhere been suggested 

that an analysis of residuals should be performed, with a view to detecting bias (systematic 

error) in regression predictions (Roy et al., 2017). 

For the avoidance of doubt, it should be reiterated that whether these statistics 

represent unbiased estimates of the predictive power of a model is related to the set of 

instances (i.e. nanomaterials in the current context) for which they are calculated. If they are 

estimated by comparing the predictions of the model to the training set endpoint values, they 

will be optimistically biased. If they are used to compare endpoint values to predictions 

obtained from suitable resampling schemes (section 2.4.1) or, ideally, robust external 

validation (section 2.4.4), they may more reasonably be considered to quantify the predictive 

performance of a model.  
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2.4.3. Statistics for assessing goodness-of-fit and predictivity of classification models 

Classification models assign nanoparticles into two or more pre-defined categories. In 

a classification model, the results of the classification can be arranged in the so-called 

confusion or contingency matrix, where the rows represent the experimentally determined 

classes, while the columns represent the predicted classes assigned by the model. The 

goodness-of-fit of a classification model can be assessed in terms of its Cooper statistics 

(Cooper et al., 1979). 

The classification ability of a classification model depends on the particular dataset of 

nanomaterials used, especially if it is a small one. It is therefore useful to report some measure 

of the variability associated with the classifications, which indicates whether the classification 

performance of the model would vary significantly if it had been assessed with a different set 

of nanomaterials. To estimate confidence intervals for the Cooper statistics, the bootstrap re-

sampling technique can be used (Braga-Neto and Dougherty, 2004; Wehrens et al., 2000; 

Worth and Cronin, 2001). To compare the performances of a number of classification models, 

the Receiver Operating Characteristic (ROC) curve can be used (Lusted, 1971). In the ROC 

graph, the X-axis is 1-specificity (false positive rate) and the Y-axis is the sensitivity (true 

positive rate). An index of the performance of a classification model is the area under the 

curve. The predictive performance of a classification model can be evaluated by the 

proportion of misclassifications, e.g. as estimated with the leave-one-out method or with 

confidence intervals for a binomial proportion (Newcombe, 1998; Ross, 2003). However, 

estimating the overall percentage of misclassifications can be a poor measure of model 

performance in the case that the considered data are drawn disproportionately from one class 

(Baldi et al., 2000; Gorodkin, 2004). 

Reporting the observed error rate without estimated confidence intervals is of limited 

value. Given the study of a particular population, the true error rate constitutes an inherent 
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property of the model. The observed error rate is only an estimate and depends largely on the 

adopted sampling strategy. Confidence intervals for the statistic of interest are of particular 

importance in scenarios comprising small data sets such as nanomaterials ones (Berrar et al., 

2006a, b; Oksel et al., 2015b). 

The same comments, made at the end of section 2.4.2, regarding whether the 

calculated statistics for regression models quantify goodness-of-fit or predictivity also apply 

for the statistics calculated for classification models. 

 

2.4.4. Evaluating the predictivity of models 

One of the most important characteristics of a QSAR model is its predictive power, i.e. 

the ability, in the current context, of the model to predict accurately the (biological) activity of 

nanomaterials that were not used for model development. The resampling techniques 

discussed in section 2.4.1 are commonly described as internal validation techniques that 

cannot directly estimate the true predictive ability of a model on unseen data (Chirico and 

Gramatica, 2011, 2012; Golbraikh and Tropsha, 2002; Gramatica, 2007, 2013).However, it 

should be noted that some so-called internal validation procedures, such as cross-validation, 

need not necessarily yield optimistically biased estimates of model performance, if none of 

the selection of model parameters and descriptors is based on the nanoparticles used to assess 

model performance (Hawkins, 2004). Cross-validation carried out in this fashion may be 

termed 'external cross-validation' (Low et al., 2011). 

Nonetheless, true external validation (Chirico and Gramatica, 2011, 2012; Gramatica, 

2007, 2013; Tropsha, 2010; Tropsha et al., 2003) of the final model on data not seen during 

model development should be the ultimate aim.  In principle, the predictivity of a model 

should be estimated by comparing the predicted and observed values/classes of a sufficiently 

large and representative external test set of nanomaterials that were not used in the 

development of the model. However, external validation can be difficult to assess in a 
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meaningful way when data of sufficient quality are scarce. For this reason, a common practice 

is to split the available dataset into a training set, used to develop the model, and an external 

test set, used to assess the predictive capability of the model. (Indeed, if data are only 

available for a very small number of nanoparticles, the use of cross-validation protocols, 

suitably adapted to avoid optimistic bias, may yield a more reliable estimate of predictive 

power than splitting into a single training and test set (Hawkins, 2004).) One view is that an 

ideal splitting leads to a test set such that each of its members is close to at least one member 

of the training set (Tropsha et al., 2003), although it can be argued that this leads to an 

unrealistic test set which overestimates the performance of the model as a predictive tool. 

Approaches for the selection of training and test sets range from the straightforward random 

selection (Yasri and Hartsough, 2001), through activity sampling and various systematic 

clustering techniques (Potter and Matter, 1998; Taylor, 1995), to the methods of self-

organising maps (Gasteiger and Zupan, 1993), Kennard and Stone algorithm (Kennard and 

Stone, 1969), formal statistical experimental design (Eriksson and Johansson, 1996), and the 

modified sphere exclusion algorithm (Golbraikh et al., 2003). However, it is recommended 

that, whenever possible, the external predictivity of the model should be assessed based on a 

test set drawn from the studied general population (domain) of nanoparticles independently 

from sampling the training set nanoparticles. This strategy results in more realistic assessment 

of the external predictive ability of the (Q)SAR model than just a single sampling and then 

splitting the samples into the training and test sets (Esbensen and Geladi, 2010). 

To conclude this section (2.4), the above statistical approaches originally developed 

for “classic” QSARs are equally appropriate for nano-QSARs; there is no need to invent 

specific statistical measures of goodness-of-fit, robustness and predictivity. However, the 

typically small size of nano-QSAR datasets means certain considerations related to estimating 

model performance from data resampling are particularly pertinent, as discussed above. 
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2.5. Mechanistic interpretation, if possible 

 

According to the fifth OECD Principle (OECD, 2007), a (Q)SAR should be associated 

with a “mechanistic interpretation”, wherever such an interpretation can be made. The 

purpose of this was to allow for interpretation of QSAR in a manner that would increase 

confidence and reduce the possibility of models based on chance correlations. Obviously, it is 

not always possible to provide a mechanistic interpretation of a given (Q)SAR. The intent of 

this principle is therefore to ensure that there is an assessment of the mechanistic associations 

between the descriptors used in a model, if any, and the endpoint being predicted, and that 

any assessment is documented. Where a mechanistic interpretation is possible, it can also 

form part of the defined applicability domain (section 2.3). 

Consequently, a useful (Q)SAR model may lack mechanistic interpretation because a 

model is in its early stages of evolution, because the mechanistic elements of the application 

domain have not been compiled from the literature, or because the underlying toxicity 

mechanisms are still not fully scientifically understood. Principle 5 encourages the validation 

process to include mechanistic interpretations, which can add to the understanding of the 

statistical validity and the domain of application. 

The mechanistic interpretation of (Q)SARs for nanomaterials represents a major 

challenge because it should be based on (i) an understanding of the mechanism of action 

within an appropriate Adverse Outcome Pathway (AOP) (OECD, 2013b) triggered by the 

nanomaterial at different stages of systemic transport, (ii) knowledge of the Molecular 

Initiating Events (MIE) for the AOP, and once (i) and (ii) are known, (iii) quantitative 

understanding of interactions at the nano-bio interface. This possibility depends on the 

availability of the relevant nanomaterials’ structural characteristics, from physicochemical 

characterisation, and mechanistic information. 
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We should state that the majority of interactions at the nano-bio interface cannot be 

currently understood and interpreted (quantitatively) due to the lack of adequate molecular 

models (Boulos et al., 2013). Therefore, the mechanistic interpretations of pathways leading 

to e.g. genotoxicity, protein misfolding (Khan et al., 2013), and promotion of protein 

aggregation (e.g. amyloid fibre formation) cannot be directly made (but may be assumed in 

certain cases). In contrast, the pathways involving more basic interactions leading to oxidative 

stress, inflammation, due to ion release of dissociating ions etc. can be directly assessed 

(Fahmy and Cormier, 2009; Manke et al., 2013; Xia et al., 2008; Yang et al., 2009). However, 

it remains the case that full understanding of the biological significance of key nanomaterial 

properties, such as particle shape, has still not been achieved (Bai et al., 2017). 

In summary, the evolving state of understanding regarding the mechanistic basis of 

nanomaterial toxicity means that it is understandable if the mechanistic basis for nano-QSAR 

models is somewhat speculative. On the other hand, nano-QSAR studies may themselves help 

to advance mechanistic understanding (Bai et al., 2017; Gajewicz et al., 2015). 

 

3. Applying the OECD principles to nano-QSAR models: examples from the NanoSafety 

Modelling Cluster 

 

In order to illustrate how the OECD principles may be applied, in keeping with the 

detailed discussion presented in section 2, to nano-QSAR models, we critically evaluated four 

examples taken from the literature. Specifically, these models were developed with the 

support of projects in the NanoSafety Modelling Cluster, as defined in the Introduction, 

sometimes in collaboration with external researchers and initiatives. The models are listed in 

Table 1 and the evaluations are presented in Table 2.  

Importantly, in keeping with Burello (Burello, 2017), we do not apply a simplistic, 

tick box “reject vs. accept” approach to evaluation according to the five principles. Rather, we 
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advocate that careful evaluation of nano-QSAR models be performed by experts in QSAR 

modelling of nanomaterials in consultation with experts in the relevant area of experimental 

nanoscience and the intended application area (e.g. regulatory decision making), as applicable.  

For brevity, we do not raise every single possible question which experts in these areas 

would need to pose. Rather, the key questions posed in Table 2 reflect important 

considerations building upon our discussion under section 2. Other relevant questions, which 

would require more detailed critical examination of the models, should also be considered. 

For example, additional aspects related to data quality and completeness, e.g. in terms of the 

physicochemical characterization and experimental metadata, would be relevant for assessing 

compliance with principles 1 (a defined endpoint, discussed in section 2.1) and 3 (a defined 

domain of applicability, discussed in section 2.3). A detailed discussion of assessing the 

completeness and quality of nanomaterial data was recently presented elsewhere (Marchese 

Robinson et al., 2016). In addition to descriptive documentation of the modelling workflow, 

full compliance with principle 2 (discussed in section 2.2), may require the relevant source 

code and, where relevant, random number generator seeds and other computational details to 

be documented in order to fully reproduce the models, and/or for the structure of the models 

to be encoded in the Predictive Model Markup Language (PMML) along with other necessary 

information required to calculate the descriptors etc. (Editorial, 2014; Helma et al., 2017; 

Tetko et al., 2017). (The “other necessary information” might be documented using the 

QMRF or QSARdb formats (Tetko et al., 2017), possibly with adaptations as discussed in 

section 2.2.)   Likewise, careful consideration is required of whether the performance statistics 

were suitable (Alexander et al., 2015) and were obtained from reliable, truly external, or 

otherwise unbiased, validation protocols, as is discussed in section 2.4 and in key literature 

references (Braga-Neto and Dougherty, 2004; Hawkins, 2004; Hawkins et al., 2003; Tropsha, 

2010; Tropsha et al., 2003). A relevant consideration, regarding the reliability of the 
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validation statistics, relates to the size of the nanomaterial datasets, which are typically small, 

as discussed under section 2.4. Regarding the principle of a mechanistic interpretation, as 

discussed in section 2.5, the fact that our understanding of the mechanisms of action of 

nanomaterial effects may be expected to continue to evolve, means that assessing the 

mechanistic plausibility of a nano-QSAR model remains challenging. Finally, regarding the 

question of whether the endpoint is relevant for the intended application of the model, as 

discussed in section 2.1, the evaluated models (Table 1) might be considered for use in a 

variety of different contexts (e.g. initial screening or safety-by-design by manufacturers, as 

compared to decision support for regulators) and, outside of a specific context, this question 

cannot be directly answered.  

 
Table 1. Summary of models evaluated in Table 2 

Model Label Model Title and Reference Supporting Project(s) 

Model 1 Random Forest nanosilica cytotoxicity model  

(Cassano et al., 2016) 

NanoPUZZLES 

Model 2 SVM metal oxide nanoparticle toxicity classifier  

(Liu et al., 2013a) 

MODERN 

Model 3 CORAL carbon nanotube mutagenicity model  

(Toropov and Toropova, 2015)  

PreNanoTox & NanoPUZZLES 

Model 4 Local weighted Random Forest (proteomics descriptors) gold 

and silver nanoparticle cell association model  

(Helma et al., 2017)  

eNanoMapper 

 

 
Table 2. Minimal evaluation of selected nano-QSAR models (Table 1) according to the OECD principles 

OECD 

Principle 

Key Question Model 1 

 

Model 2 

 

Model 3 

 

Model 4 

 

A defined 

endpoint 

(section 2.1) 

Is a precise 

definition of the 

endpoint 

provided (e.g. an 

ontology 

definition)? 

Yes. The endpoint 

is –log(EC25), fully 

described, for the 

in vitro WST-1 

assay. 

The definition of 

“toxic” vs. “non-

toxic” classes is 

clearly described. 

However, as this is 

based upon 

clustering analysis 

of data from a 

variety of toxicity 

assays, the 

interpretation of this 

endpoint is arguably 

complicated.  

Yes. The endpoint 

is defined as –

log(TA100), where 

TA100 is defined 

as the mean 

mutant counts 

from the 

Salmonella 

microsome test in 

the TA100 strain 

tested at one, out 

of many, doses. 

Yes. The endpoint is 

log2[net cell 

association],  where 

net cell association 

was described 

herein (Helma et al., 

2017) and precisely 

defined in the cited 

original data source 

(Walkey et al., 

2014). 

Are the test 

methods / 

assays, along 

with the key 

Yes, to some 

extent. The assay, 

cell type and 

treatment type are 

Yes Yes Yes, in the original 

source of the 

dataset (Walkey et 
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experimental 

variables, used 

to generate the 

endpoint data 

documented? 

documented. Other 

relevant details, 

e.g. exposure 

medium details, 

are not provided. 

al., 2014). 

Are the data 

“reasonably” 

experimentally 

consistent? 

Data were 

combined from 

diverse protocols, 

e.g. different cell 

types. However, 

this variability is 

accounted for via 

considering the 

varied 

experimental 

conditions as 

descriptors. 

Whilst data from 

multiple assays 

were combined to 

provide the “toxic” 

vs. “non-toxic” 

endpoint, each 

individual assay 

was performed 

according to a 

consistent protocol 

as described in a 

single primary 

literature citation 

(Zhang et al., 2012). 

Data were 

generated 

according to 

different 

conditions, yet in 

the same lab 

according to a 

single 

experimental 

protocol described 

in the cited 

primary literature 

reference 

(Wirnitzer et al., 

2009). However, 

this variability is 

accounted for via 

considering the 

varied 

experimental 

conditions as 

descriptors.  

Data were 

generated according 

to a single 

experimental 

protocol  (Walkey et 

al., 2014). 

Are units 

provided for 

numerical 

endpoints? 

Yes. The units for 

the EC25 values 

are provided. 

N/A N/A  Yes 

Have 

concentration / 

dose related 

units been 

converted from 

mass based 

units (e.g. into 

surface area 

based units)? 

Yes. The EC25 

values are 

expressed in 

surface area 

concentration 

units. 

No (Zhang et al., 

2012) 

No (Wirnitzer et 

al., 2009) 

No  

Has the potential 

for nanomaterial 

interference with 

the assays been 

excluded? 

This is unclear. It 

has been 

suggested that the 

WST-1 assay 

avoids certain 

interference 

problems with 

some carbon 

based 

nanomaterials, 

compared to some 

other cytotoxicity 

assays (Domey et 

al., 2013). 

This is unclear. This is unclear. This is unclear. 

Has endotoxin 

or residual 

solvent 

contamination 

been assessed? 

This was not 

addressed. 

This was not 

addressed. 

This was not 

addressed. 

This was not 

addressed. 

An 

unambiguous 

algorithm 

(section 2.2) 

Which 

descriptors were 

used? 

An expert selected 

combination of 

physicochemical 

measurement and 

experimental 

variables, all 

converted to binary 

variables, were 

A pool of thirty 

descriptors was 

initially considered, 

including simple 

atom counts, 

experimental 

properties of the 

constituents, and 

Different 

experimental 

conditions were 

converted to 

labels 

incorporated into 

“quasi-SMILES”. 

Experimental 

measurements 

characterizing 

interactions with 

proteins in human 

serum, as fully 

described in the 

original source of 
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used.  conduction band 

energy estimated 

from the measured 

band gap (Zhang et 

al., 2012). This 

initial pool of 

descriptors was 

reduced to two via 

statistical feature 

selection: the 

conduction band 

energy and the ionic 

index of the metal 

cation. 

the dataset (Walkey 

et al., 2014), were 

reduced via feature 

selection. 

Which statistical 

/ machine 

learning 

algorithm was 

used? 

Random Forest SVM The CORAL 

software was 

employed 

(http://www.insilico

.eu/coral). 

Weighted local 

average Random 

Forest modelling, 

trained on the 

nearest neighbours 

identified via 

descriptor similarity. 

A defined 

domain of 

applicability 

(section 2.3) 

Have the 

modelled 

nanomaterials 

been adequately 

characterized in 

terms of their 

physico-

chemical 

characteristics? 

To some extent. 

The composition of 

the core and, to 

some extent, 

details of the 

coatings are 

provided in the 

Supporting 

Information. Some 

additional 

physicochemical 

characterization 

data are provided, 

with partial 

description of 

experimental 

protocols.  

To a considerable 

extent. The 

chemical 

composition, along 

with experimentally 

measured sizes, 

zeta potential, 

dissolution profile 

and crystalline 

structure are 

provided, along with 

experimental 

details, in the cited 

primary literature 

(Zhang et al., 2012).  

To some extent. 

The tested 

nanomaterials 

were described as 

the commercially 

available 

Baytubes® (multi-

walled carbon 

nanotubes) and a 

characterization of 

size and shape 

distribution for the 

prepared samples 

is provided in the 

primary literature 

reference 

(Wirnitzer et al., 

2009). N.B. Since 

only experimental 

conditions were 

incorporated into 

the model, based 

on results for a 

single 

nanomaterial, it 

could not be 

expected to be 

applicable to 

anything other 

than these same 

nanomaterials.  

To a considerable 

extent. Detailed 

descriptions of core 

and surface 

chemical 

composition are 

provided, alongside 

detailed 

measurement of 

size distributions, 

according to a 

variety of 

techniques, and zeta 

potential in the 

original source of 

the dataset (Walkey 

et al., 2014). 

Has an 

applicability 

domain been 

defined? 

No Yes Yes, based on 

analysis of the 

“quasi-SMILES”. 

Yes 

Are uncertainty 

estimates 

provided for 

predictions? 

No In some sense: the 

model estimates the 

probability of being 

toxic. 

No Yes (95% prediction 

intervals) 

Appropriate 

measures of 

goodness-of-

fit, robustness 

and 

predictivity 

(section 2.4) 

How was the 

ability of the 

model to make 

predictions for 

untested 

nanomaterials 

assessed?  

“External” LOO 

cross-validation 

Via the “0.632 

estimator”, based 

on bootstrapping. 

LMO cross-

validation 

5 repetitions of 10-

fold cross-validation, 

with feature 

selection being 

repeated for each 

training set to avoid 

overfitting 
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What were the 

overall 

performance 

statistics and 

their values? 

R
2
 = 0.78 Balanced 

classification 

accuracy = 93.74% 

r
2
 (correlation 

coefficient)
 
= 0.74 

– 0.80 (across 

three validation 

splits); 0.75 – 0.82 

(only considering 

instances inside 

the domain of 

applicability) 

r
2
 (explained model 

variance) = 0.55 – 

0.68 across all five 

repetitions of cross-

validation; RMSE = 

1.51 – 1.8 log units; 

87 – 92% of 

predictions within 

the 95% prediction 

intervals  

Mechanistic 

interpretation, 

if possible 

(section 2.5) 

Was a 

mechanistic 

interpretation 

proposed by the 

study authors? 

This issue is 

touched upon, but 

a full mechanistic 

interpretation is not 

provided. 

Yes Yes No 

How do the 

study authors 

arrive at this 

interpretation? 

They evaluate 

“feature 

contributions” for 

Random Forest. 

They evaluate the 

range of descriptor 

values associated 

with toxic vs. non-

toxic classifications, 

according to the 

model. 

They consider 

variables which 

have a “stable 

positive correlation 

weight” with the 

endpoint. 

N/A 

Do the study 

authors consider 

whether this 

mechanistic 

interpretation is 

consistent with 

current 

understanding? 

Yes   Yes No N/A 

 

 

4. Conclusions 

 

(Quantitative) Structure-Activity Relationship ([Q]SAR) modelling is one possibility 

for estimating hazard or exposure related characteristics, either in the context of a risk 

assessment or as part of a “safe-by-design” approach. It might be used for predicting a variety 

of properties, including toxicity of newly designed nanoparticles. However, every nano-

(Q)SAR must be appropriately validated, which is crucial for ensuring its predictive accuracy. 

In this contribution, we proposed an interpretation of the well-known “OECD Principles for 

the Validation, for Regulatory Purposes, of (Q)SAR Models” in the context of nano-(Q)SAR 

and presented our opinion on the criteria to be fulfilled by every model developed for 

nanoparticles, whether employed in a regulatory context or otherwise. 
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In general, we agree that the OECD principles create an appropriate framework for 

validating nano-(Q)SARs as well. However, special attention is required for some issues 

specific to nanoparticles. The most important conclusions are as follows: 

• Careful consideration is required as to whether or not the activity data are reliable, due 

to various potential pitfalls associated with experimental assessment of nanomaterial 

activity, and whether or not appropriate concentration/dose units have been used. 

• Classic molecular descriptors are typically, but not always, inappropriate for 

modelling nanoparticles. On the other hand, newly developed descriptors should be 

validated and reported by providing the details necessary for anyone interested to 

calculate them or, where applicable, obtain them from experimental characterization 

of the nanomaterials. 

• It is highly recommended that the models are presented and documented in a format 

such as the descriptive (Q)SAR Model Reporting Format (QMRF), or the machine 

readable QsarDB format – including model representation using Predictive Model 

Markup Language (PMML) and, whenever possible, be placed in public repositories 

and exposed as web applications to ensure their transparency and reproducibility. N.B. 

Guidance on suitable linked data files, or possibly other adaptations of these formats, 

is required to ensure their suitability for nano-QSAR, as opposed to classical (Q)SAR, 

models.  

• Compared to classical (Q)SAR modelling, it seems much more important to achieve a 

balance between the level of confidence in the predictions of a nano-(Q)SAR and its 

scope (i.e., applicability domain). It is essential to reach a balance between “local” and 

“global” models. 

• Nano-bio interactions involving nanoparticles are not fully determined by the particle 

chemistry alone. Because of that, mechanistic interpretation of nano-(Q)SARs can be 
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more problematic than those for classic (Q)SAR models; very often a wider context is 

required.  
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