1,336 research outputs found
Recommended from our members
Retraction for Cho et al., New findings of the correlation between acupoints and corresponding brain cortices using functional MRI
Protein Kinase A Regulatory Subunits in Human Adipose Tissue: Decreased R2B Expression and Activity in Adipocytes From Obese Subjects
OBJECTIVE—In human adipocytes, the cAMP-dependent pathway mediates signals originating from β-adrenergic activation, thus playing a key role in the regulation of important metabolic processes, i.e., lipolysis and thermogenesis. Cyclic AMP effects are mainly mediated by protein kinase A (PKA), whose R2B regulatory isoform is the most expressed in mouse adipose tissue, where it protects against diet-induced obesity and fatty liver development. The aim of the study was to investigate possible differences in R2B expression, PKA activity, and lipolysis in adipose tissues from obese and nonobese subjects
Influence of SIGLEC9 polymorphisms on COPD phenotypes including exacerbation frequency.
BACKGROUND AND OBJECTIVE: The exacerbation-prone phenotype of COPD is particularly important, as exacerbations lead to poor quality of life and disease progression. We previously found that COPD patients who lack Siglec-14, a myeloid cell protein that recognizes bacteria and triggers inflammatory responses, are less prone to exacerbation. We hypothesized that the variations in other SIGLEC genes could also influence COPD exacerbation frequency, and investigated the association between SIGLEC9 polymorphisms and the exacerbation-prone phenotype of COPD. METHODS: We examined whether SIGLEC9 polymorphisms affect the frequency of COPD exacerbation in 135 subjects within our study population, and also analysed the correlation between the genotypes and the severity of airflow obstruction and emphysema in 362 Japanese smokers including 244 COPD patients. The association between these single nucleotide polymorphisms (SNPs) and COPD phenotypes were also assessed in a Caucasian population of ECLIPSE study. The effects of these coding SNPs (cSNPs) on Siglec-9 protein functions were analysed using in vitro assays. RESULTS: The G allele of rs2075803 and rs2075803 G/rs2258983 A(GA) haplotype in SIGLEC9 was associated with higher frequency of exacerbations and the extent of emphysema in COPD. These results did not replicate in the ECLIPSE study. A myeloid cell line expressing the Siglec-9 variant corresponding to GA haplotype produced more TNF-α than the one expressing the variant corresponding to the other major haplotype. CONCLUSION: The SIGLEC9 rs2075803 G/rs2258983 A haplotype, which corresponds to a Siglec-9 variant that is less effective at suppressing inflammatory response, may be a risk factor for the development of emphysema
Stochastic particle acceleration in the lobes of giant radio galaxies
We investigate the acceleration of particles via the second-order Fermi
process in the lobes of giant radio galaxies. Such sites are candidates for the
accelerators of ultra-high energy cosmic rays. We focus on the nearby FR I
radio galaxy Centaurus A. This is motivated by the coincidence of its position
with the arrival direction of several of the highest energy Auger events. The
conditions necessary for consistency with the acceleration timescales predicted
by quasi-linear theory are reviewed. Test particle calculations are performed
in fields which guarantee electric fields with no component parallel to the
local magnetic field. The results of quasilinear theory are, to order of
magnitude, found to be accurate at low turbulence levels for non-relativistic
Alfven waves and at both low and high turbulence levels in the mildly
relativistic case. We conclude that for pure stochastic acceleration to be
plausible as the generator of ultra-high energy cosmic rays in Centaurus A, the
baryon number density would need to be several orders of magnitude below
currently held upper-limits.Comment: accepted to Mon. Not. R. Astron. Soc., 11 pages, 6 figure
Growth behavior of titanium dioxide thin films at different precursor temperatures
The hydrophilic TiO2 films were successfully deposited on slide glass substrates using titanium tetraisopropoxide as a single precursor without carriers or bubbling gases by a metal-organic chemical vapor deposition method. The TiO2 films were employed by scanning electron microscopy, Fourier transform infrared spectrometry, UV-Visible [UV-Vis] spectroscopy, X-ray diffraction, contact angle measurement, and atomic force microscopy. The temperature of the substrate was 500°C, and the temperatures of the precursor were kept at 75°C (sample A) and 60°C (sample B) during the TiO2 film growth. The TiO2 films were characterized by contact angle measurement and UV-Vis spectroscopy. Sample B has a very low contact angle of almost zero due to a superhydrophilic TiO2 surface, and transmittance is 76.85% at the range of 400 to 700 nm, so this condition is very optimal for hydrophilic TiO2 film deposition. However, when the temperature of the precursor is lower than 50°C or higher than 75°C, TiO2 could not be deposited on the substrate and a cloudy TiO2 film was formed due to the increase of surface roughness, respectively
Validation of an arterial tortuosity measure with application to hypertension collection of clinical hypertensive patients
<p>Abstract</p> <p>Background</p> <p>Hypertension may increase tortuosity or twistedness of arteries. We applied a centerline extraction algorithm and tortuosity metric to magnetic resonance angiography (MRA) brain images to quantitatively measure the tortuosity of arterial vessel centerlines. The most commonly used arterial tortuosity measure is the distance factor metric (DFM). This study tested a DFM based measurement’s ability to detect increases in arterial tortuosity of hypertensives using existing images. Existing images presented challenges such as different resolutions which may affect the tortuosity measurement, different depths of the area imaged, and different artifacts of imaging that require filtering.</p> <p>Methods</p> <p>The stability and accuracy of alternative centerline algorithms was validated in numerically generated models and test brain MRA data. Existing images were gathered from previous studies and clinical medical systems by manually reading electronic medical records to identify hypertensives and negatives. Images of different resolutions were interpolated to similar resolutions. Arterial tortuosity in MRA images was measured from a DFM curve and tested on numerically generated models as well as MRA images from two hypertensive and three negative control populations. Comparisons were made between different resolutions, different filters, hypertensives versus negatives, and different negative controls.</p> <p>Results</p> <p>In tests using numerical models of a simple helix, the measured tortuosity increased as expected with more tightly coiled helices. Interpolation reduced resolution-dependent differences in measured tortuosity. The Korean hypertensive population had significantly higher arterial tortuosity than its corresponding negative control population across multiple arteries. In addition one negative control population of different ethnicity had significantly less arterial tortuosity than the other two.</p> <p>Conclusions</p> <p>Tortuosity can be compared between images of different resolutions by interpolating from lower to higher resolutions. Use of a universal negative control was not possible in this study. The method described here detected elevated arterial tortuosity in a hypertensive population compared to the negative control population and can be used to study this relation in other populations.</p
Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population
BACKGROUND: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter >10 microm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)>0.05). Replication was attempted for SNPs with MAF<10% in 3320 SAPALDIA participants without GWAS. RESULTS: On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5x10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7x10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0x10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobac smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challengin
Voluntary exercise can strengthen the circadian system in aged mice
Consistent daily rhythms are important to healthy aging according to studies linking disrupted circadian rhythms with negative health impacts. We studied the effects of age and exercise on baseline circadian rhythms and on the circadian system's ability to respond to the perturbation induced by an 8 h advance of the light:dark (LD) cycle as a test of the system's robustness. Mice (male, mPer2luc/C57BL/6) were studied at one of two ages: 3.5 months (n = 39) and >18 months (n = 72). We examined activity records of these mice under entrained and shifted conditions as well as mPER2::LUC measures ex vivo to assess circadian function in the suprachiasmatic nuclei (SCN) and important target organs. Age was associated with reduced running wheel use, fragmentation of activity, and slowed resetting in both behavioral and molecular measures. Furthermore, we observed that for aged mice, the presence of a running wheel altered the amplitude of the spontaneous firing rate rhythm in the SCN in vitro. Following a shift of the LD cycle, both young and aged mice showed a change in rhythmicity properties of the mPER2::LUC oscillation of the SCN in vitro, and aged mice exhibited longer lasting internal desynchrony. Access to a running wheel alleviated some age-related changes in the circadian system. In an additional experiment, we replicated the effect of the running wheel, comparing behavioral and in vitro results from aged mice housed with or without a running wheel (>21 months, n = 8 per group, all examined 4 days after the shift). The impact of voluntary exercise on circadian rhythm properties in an aged animal is a novel finding and has implications for the health of older people living with environmentally induced circadian disruption
Protein Kinase A Regulatory Subunits in Human Adipose Tissue: Decreased R2B Expression and Activity in Adipocytes From Obese Subjects
OBJECTIVE—In human adipocytes, the cAMP-dependent pathway mediates signals originating from β-adrenergic activation, thus playing a key role in the regulation of important metabolic processes, i.e., lipolysis and thermogenesis. Cyclic AMP effects are mainly mediated by protein kinase A (PKA), whose R2B regulatory isoform is the most expressed in mouse adipose tissue, where it protects against diet-induced obesity and fatty liver development. The aim of the study was to investigate possible differences in R2B expression, PKA activity, and lipolysis in adipose tissues from obese and nonobese subjects
- …