29 research outputs found

    Electricity portfolio innovation for energy security: the case of carbon constrained China

    Get PDF
    China’s energy sector is under pressure to achieve secure and affordable supply and a clear decarbonisation path. We examine the longitudinal trajectory of the Chinese electricity supply security and model the near future supply security based on the 12th 5 year plan. Our deterministic approach combines Shannon-Wiener, Herfindahl-Hirschman and electricity import dependence indices for supply security appraisal. We find that electricity portfolio innovation allows China to provide secure energy supply despite increasing import dependence. It is argued that long-term aggressive deployment of renewable energy will unblock China’s coal-biased technological lock-in and increase supply security in all fronts. However, reduced supply diversity in China during the 1990s will not recover until after 2020s due to the long-term coal lock-in that can threaten to hold China’s back from realising its full potential

    Strategic deliberation on development of low-carbon energy system in China

    No full text
    In recent years, there have been considerable developments in energy provision with the growing improvements in energy supply security and support systems in China. However, China's energy system continues to retain a high-carbon feature where coal dominates energy production and consumption, which has led to the rapid growth of greenhouse gas emissions and associated serious environmental pollution. It has therefore become an important task for China to consider how to promote the low-carbon development of energy system. This paper summarized the basic trends and challenges for development of low-carbon energy system in China and studied the primary energy consumption and carbon emissions in different scenarios at 10-year intervals between 2010 and 2050. The analysis showed that controlling coal consumption will have an important influence on the control of total carbon emissions and of carbon emission peaking; promotion of non-fossil fuel energies will offer a growing contribution to a low-carbon transition in the medium and long term; the development of carbon capture, utilization, and storage will play a key role in realizing a deep decarbonization pathway, particularly after 2030; and the establishment of a low-carbon power system is crucial for the achievement of low-carbon energy transition. Finally, the strategic considerations and policy suggestions on the development of low-carbon energy systems in China are explored
    corecore