36 research outputs found

    Sometimes Sperm Whales (Physeter macrocephalus) Cannot Find Their Way Back to the High Seas: A Multidisciplinary Study on a Mass Stranding

    Get PDF
    BACKGROUND: Mass strandings of sperm whales (Physeter macrocephalus) remain peculiar and rather unexplained events, which rarely occur in the Mediterranean Sea. Solar cycles and related changes in the geomagnetic field, variations in water temperature and weather conditions, coast geographical features and human activities have been proposed as possible causes. In December 2009, a pod of seven male sperm whales stranded along the Adriatic coast of Southern Italy. This is the sixth instance from 1555 in this basin. METHODOLOGY/PRINCIPAL FINDINGS: Complete necropsies were performed on three whales whose bodies were in good condition, carrying out on sampled tissues histopathology, virology, bacteriology, parasitology, and screening of veins looking for gas emboli. Furthermore, samples for age determination, genetic studies, gastric content evaluation, stable isotopes and toxicology were taken from all the seven specimens. The animals were part of the same group and determined by genetic and photo-identification to be part of the Mediterranean population. Causes of death did not include biological agents, or the "gas and fat embolic syndrome", associated with direct sonar exposure. Environmental pollutant tissue concentrations were relatively high, in particular organochlorinated xenobiotics. Gastric content and morphologic tissue examinations showed a prolonged starvation, which likely caused, at its turn, the mobilization of lipophilic contaminants from the adipose tissue. Chemical compounds subsequently entered the blood circulation and may have impaired immune and nervous functions. CONCLUSIONS/SIGNIFICANCE: A multi-factorial cause underlying this sperm whales' mass stranding is proposed herein based upon the results of postmortem investigations as well as of the detailed analyses of the geographical and historical background. The seven sperm whales took the same "wrong way" into the Adriatic Sea, a potentially dangerous trap for Mediterranean sperm whales. Seismic surveys should be also regarded as potential co-factors, even if no evidence of direct impact has been detected

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well

    HIV-1 matrix protein p17 misfolding forms toxic amyloidogenic assemblies that induce neurocognitive disorders

    Get PDF
    © 2017 The Author(s). Human immunodeficiency virus type-1 (HIV-1)-Associated neurocognitive disorder (HAND) remains an important neurological manifestation that adversely affects a patient's quality of life. HIV-1 matrix protein p17 (p17) has been detected in autoptic brain tissue of HAND individuals who presented early with severe AIDS encephalopathy. We hypothesised that the ability of p17 to misfold may result in the generation of toxic assemblies in the brain and may be relevant for HAND pathogenesis. A multidisciplinary integrated approach has been applied to determine the ability of p17 to form soluble amyloidogenic assemblies in vitro. To provide new information into the potential pathogenic role of soluble p17 species in HAND, their toxicological capability was evaluated in vivo. In C. elegans, capable of recognising toxic assemblies of amyloidogenic proteins, p17 induces a specific toxic effect which can be counteracted by tetracyclines, drugs able to hinder the formation of large oligomers and consequently amyloid fibrils. The intrahippocampal injection of p17 in mice reduces their cognitive function and induces behavioral deficiencies. These findings offer a new way of thinking about the possible cause of neurodegeneration in HIV-1-seropositive patients, which engages the ability of p17 to form soluble toxic assemblies

    Editorial: Summary of activities 2014

    Get PDF
    <div><p>Plants enter their reproductive phase when the environmental conditions are favourable for the successful production of progeny. The transition from vegetative to reproductive phase is influenced by several environmental factors including ambient temperature. In the model plant <i>Arabidopsis thaliana</i>, <i>SHORT VEGETATIVE PHASE (SVP)</i> is critical for this pathway; <i>svp</i> mutants cannot modify their flowering time in response to ambient temperature. <i>SVP</i> encodes a MADS-box transcription factor that directly represses genes that promote flowering. SVP binds DNA in complexes with other MADS-box transcription factors, including FLOWERING LOCUS M (FLM), which acts with SVP to repress the floral transition at low temperatures. Small temperature changes post-transcriptionally regulate <i>FLM</i> through temperature-dependent alternative splicing (TD-AS). As ambient temperature increases, the predominant <i>FLM</i> splice isoform shifts to encode a protein incapable of exerting a repressive effect on flowering. Here we characterize a closely related MADS-box transcription factor, MADS AFFECTING FLOWERING2 (MAF2), which has independently evolved TD-AS. At low temperatures the most abundant <i>MAF2</i> splice variant encodes a protein that interacts with SVP to repress flowering. At increased temperature the relative abundance of splice isoforms shifts in favour of an intron-retaining variant that introduces a premature termination codon. We show that this isoform encodes a protein that cannot interact with SVP or repress flowering. At lower temperatures MAF2 and SVP repress flowering in parallel with FLM and SVP, providing an additional input to sense ambient temperature for the control of flowering.</p></div

    <i>MAF2</i> splice variants.

    No full text
    <p><i>MAF2</i> splice variants observed by RT-PCR are shown with the names used in this report and alternative names reported elsewhere (Rosloski 2013, Ratcliffe 2003 and TAIR website). The names are followed by a schematic representation of the genomic structure of each splice variant. Rectangles represent exons and lines represent introns. The premature termination codon introduced as a result of intron 3 retention in <i>MAF2var2</i> is indicated (TAA).</p

    Comparison of flowering time in WT and mutant backgrounds.

    No full text
    <p>A,B,C, the columns indicate the number of rosette leaves (in black) plus the number of cauline leaves (in grey). Plants were grown at 21°C. A, Comparison of flowering time between WT and <i>maf2</i>, <i>maf2 svp</i> and <i>svp</i> mutants. (no. of plants analyzed 161) B, Flowering time of WT and plants overexpressing <i>MAF2var1</i> in WT and <i>svp</i> backgrounds (no. of plants analyzed 100, four independent transformants for each transgenic line). C, Flowering time of <i>flc maf2</i> double mutants compared to <i>svp</i> mutants (no. of plants analyzed 92). D, Quantitative RT-PCR of <i>FT</i> in WT and <i>maf2</i> backgrounds. Error bars represent the standard error.</p

    Flowering time of WT and <i>maf2</i> mutants at different temperatures.

    No full text
    <p>(no. of plants analyzed 257) The columns represent the number of rosette leaves (in black) plus the number of cauline leaves (in grey). Error bars represent the standard error.</p
    corecore