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Abstract In this article we propose a novel mathe-

matical description of biomass growth that combines

poroelastic theory of mixtures and cellular population

models. The formulation, potentially applicable to

general mechanobiological processes, is here used to

study the engineered cultivation in bioreactors of

articular chondrocytes, a process of Regenerative

Medicine characterized by a complex interaction

among spatial scales (from nanometers to centime-

ters), temporal scales (from seconds to weeks) and

biophysical phenomena (fluid-controlled nutrient

transport, delivery and consumption; mechanical

deformation of a multiphase porous medium). The

principal contribution of this research is the inclusion

of the concept of cellular ‘‘force isotropy’’ as one of

the main factors influencing cellular activity. In this

description, the induced cytoskeletal tensional states

trigger signalling transduction cascades regulating

functional cell behavior. This mechanims is modeled

by a parameter which estimates the influence of local

force isotropy by the norm of the deviatoric part of the

total stress tensor. According to the value of the

estimator, isotropic mechanical conditions are

assumed to be the promoting factor of extracellular

matrix production whereas anisotropic conditions are

assumed to promote cell proliferation. The resulting

mathematical formulation is a coupled system of

nonlinear partial differential equations comprising:

conservation laws for mass and linear momentum of

the growing biomass; advection–diffusion–reaction

laws for nutrient (oxygen) transport, delivery and

consumption; and kinetic laws for cellular population

dynamics. To develop a reliable computational tool

for the simulation of the engineered tissue growth

process the nonlinear differential problem is numer-

ically solved by: (1) temporal semidiscretization; (2)

linearization via a fixed-point map; and (3) finite

element spatial approximation. The biophysical accu-

racy of the mechanobiological model is assessed in the

analysis of a simplified 1D geometrical setting.

Simulation results show that: (1) isotropic/anisotropic

conditions are strongly influenced by both maximum

cell specific growth rate and mechanical boundary
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conditions enforced at the interface between the

biomass construct and the interstitial fluid; (2) exper-

imentally measured features of cultivated articular

chondrocytes, such as the early proliferation phase and

the delayed extracellular matrix production, are well

described by the computed spatial and temporal

evolutions of cellular populations.

Keywords Tissue engineering � Mechanobiology �
Mathematical modeling � Mixture growth theory �
Mass transport � Continuum mechanics � Numerical

simulation

Abbreviations

TE Tissue engineering

ECM Extracellular matrix

ACC Articular chondrocyte cell

PDE Partial differential equation

BVP Boundary value problem

IV-BVP Initial value/boundary value problem

1 Introduction

It is nowadays a founding concept in cellular and

molecular biology that cells are able to sense mechan-

ical stimuli in their surrounding environment and

produce a coordinate response. Such a process, defined

as mechanotransduction (see, e.g., the recent review

in [50]), plays important roles in several physiological

processes such as cell motility, angiogenesis, bone

formation and wound healing [76]. In this work, we

present a mathematical approach for describing

mechanotransduction processes involved in tissue

growth. The proposed description, albeit very general,

is applied to the scenario represented by tissue

engineering. In this context, a better knowledge of

the role of biomechanical cues can help in orchestrat-

ing a more effective artificial tissue growth. More in

detail, our work is motivated by a specific tissue

engineering application, artificial regeneration of

articular cartilage. Briefly, cartilage cells (articular

chondrocyte cells, ACCs) or other progenitor cells are

seeded into polymeric scaffolds, possibly perfused by

an interstitial fluid to force nutrient delivery. Cells are

expected to duplicate and, above all, produce an

increasing mass of ECM, forming cartilagineous neo-

tissue. Cartilage tissue growth in engineered con-

structs had been already studied in a series of papers by

Klisch and coauthors [30–32]. In this work, we enrich

the description of the biophysical phenomena by

introducing the conceptual framework developed

in [43, 45, 46]. In these works, the isotropic/anistropic

state of the cytoskeletal tension is shown to be

responsible for triggering signalling transduction

cascades which regulate functional cell behaviors

related to proliferation and/or ECM secretion. Under

the assumption of an isotropic strain-stress response, a

uniform distribution of stress over the cell surface -

stress due to the traction forces exerted by the cell on

the surrounding environment - generates an ‘‘isotropic

cytoskeletal tension state’’ in which the cell nucleus

tends tomaintain a roundish morphology (see Fig. 1a).

Conversely, in an ‘‘anisotropic cytoskeletal tension

state’’ the cell nucleus tends to elongate (see Fig. 1b).

Macroscopically speaking, when the nucleus main-

tains a roundish morphology, ECM secretion is

favoured, whereas an elongated nucleus favors cell

duplication by dividision along a polarization axis

represented by its longer axis itself. According to a

finer biomolecular view, this process can be inter-

preted as due to the fact that the shape of the nucleus is

known to regulate the porosity of its membrane and,

through this, the import flow of specific transcription

Fig. 1 Concept of isotropic/anisotropic stress state of a cell: a a
uniform distribution of traction forces (mediated by cell

membrane integrin/cadherins) over the cell surface generates

an ‘‘isotropic cytoskeletal tension state’’ in which the cell

nucleus tends to maintain a roundish morphology, favoring

ECM secretion; b an ‘‘anisotropic cytoskeletal tension state’’ the
cell nucleus tends to elongate, favoring cell mitosis
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factors which regulate cell behavior (we refer to [43]

and references therein for a more biologically detailed

discussion of these complex processes).

In order to work in a continuum mechanics

framework, we propose an extension of the above

concepts to aggregates of cells. Figure 2 schematically

illustrates how the mechanobiological conditions may

affect and drive the fate of a colony of ACCs seeded in

a 3D porous scaffold. When cells are first seeded in the

scaffold, they form a thin layer covering the surface.

Since the characteristic dimension of the local scaffold

curvature is much larger than cell size, cells find

themselves in a local planar condition (see Fig. 2a).

Exerting adhesion forces on the scaffold surface, cells

tend to assume a spread elongated shape, orienting

themselves along a preferred polarization axis.

According to the concept of ‘‘force isotropy’’, this

represents a condition which enhances the probability

that the single cell enters into a proliferative state. This

situation persists until all the pore surface is covered

with cells (Fig. 2b). From this moment on, cells start to

occupy the empty space of the pore (Fig. 2c, d). Cells

in contact with other cells sense an isotropic stress

state condition, which drives the cell towards a mature

differentiated phenotype, characterized by ECM

secretion (Fig. 2e).

To translate the mechanobiological description of

the processes illustrated in Fig. 2 into a mathematical

model, we combine the poroelastic theory of mixtures

and cellular population models. Using the model, we

predict the spatial and temporal distribution of a

biomass aggregate of ACCs and ECM under the

biophysical assumption that stress state and oxygen

(nutrient) tension act as main determinants of engi-

neered culture evolution. The poroelastic theory of

mixtures has already been proposed elsewhere to

describe mechanobiological processes in growing

tissues, possibly combined with a multiscale approach.

In these formulations, tissue growth is represented as

mass exchange between phases in a globally mass-

conserving framework. Moreover, the assumption of

linear strains is made, justified by the fact that the

microscopic representative volume in which the

volume averaging is performed does not evolve in

time whereas the individual phases do. We refer for

these approaches to the comprehensive discussion

in [5], where several different techniques (effective

medium theory, mixture theory, volume averaging and

asymptotic (two-scale) homogenization) available to

describe a poroelastic growing system are discussed

and compared. Moreover, we refer to [54] for an

example of the use of asymptotic homogenization

techniques to develop a model for growing poroelastic

media. As for cellular population models, they are

used in several literature papers to describe the

evolution of mixture components. We refer in partic-

ular to the works of [51] and [67], where multiple

cellular populations are studied describing the

exchange from one population to the other via a

phenomenological representation. From this perspec-

tive, the principal contribution of our mechanobiolog-

ical model is the inclusion of the concept of cellular

‘‘force isotropy’’ as a determinant of the passage from

one pool of cells to the other (proliferating, ECM

secreting o quiescent cells). A phenomenological

indicator of the stress/strain state of the continuum

construct is proposed, based on the on the norm of the

deviatoric part of the total stress tensor computed via

the poroelastic theory. Similarly to other models in

tissue engineering applications (see, e.g., [14, 47], we

also include the effect of nutrient (oxygen) availability

by solving for it a transport-diffusion-reaction equa-

tions. Nutrient levels are supposed to be as well

driving mechanisms in the cellular pool exchange. We

use the model on a preliminary simplified geometrical

one-dimensional setting to study the influence of the

different parameters on the evolution of the construct

composition. The extensive numerical simulations

carried out under different working conditions show

that fundamental roles are played by the maximum

cell specific growth rate and by the mechanical

(a) (b) (c)

(e) (d)

Fig. 2 Various phases of tissue growth inside a scaffold pore:

a seeding phase and cell polarization; b proliferation and

formation of a monolayer; c, d formation of new construct

layers; e ECM secretion
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boundary conditions at the interface between biomass

construct and interstitial fluid.

The paper is organized as follows: in Sect. 2, we

present the assumptions leading to the description of

the biomass as a mixture; in Sect. 3, we discuss the

kinematic laws for the growing biomass; in Sect. 4 we

formalize the balance laws for the biomass; in Sects. 5

and 6 we discuss the proposed exchange pathways

interconnecting biomechanical cues and cell popula-

tion evolution along with the corresponding model; in

Sect. 7, we present the 3D mathematical model with

the boundary conditions, while in Sect. 8 we introduce

the reduced 1D setting with the proposed stress

indicator; in Sect. 9, we discuss the numerical approx-

imation of the 1D model and in Sects. 10 and 11 we

present the results of the numerical simulations and we

carry out a comprehensive discussion. Eventually, in

Sect. 12 we draw the conclusions and we present

perspectives for future work.

2 Multiphase modeling

In this section we develop amathematical model based

on the representation of the ensemble of the growing

cartilaginous biomass by the mixture theory. In this

framework, equations are postulated for the balance of

mass and momentum for each constituent and then for

the entire mixture according to the following ideas:

(a) the growing biomass is treated as a mixture

composed by a multiphase solid mass and an

interstitial fluid, the latter representing a frac-

tion of the order of 65–80% in mass of the total

biomass. The multiphase solid consists of ACCs

and of ECM. ACCs are pooled in different

populations according to their life cycle status

(proliferative, ECM secreting, quiescent), as in

the works of Sengers [66] and Ducrot [25];

(b) the poroelasticity theory is used to model the

interaction of deformation and fluid flow in the

fluid-saturated porous, elastic solid [6, 22];

(c) the kinematics of the solid phase of themixture is

based on an infinitesimal–deformation approach,

including the effect on the stress field of

biological growth, according to the formulation

proposed by Klisch and co–authors [31–33];

(d) the mass conservation balance for each single

constituent and for the mixture are written

according to the formulation introduced by

Lemon and co-authors [35, 36] and extensively

analyzed in [51, 70];

(e) the mass exchange terms, including the rate of

switch of cells from a population to the other,

are tuned according to the nutrient level, the

latter being itself an unknown of the problem,

and to the stress state locally experienced by the

mixture, which may drive cells into a certain

functional behavior pool.

In the following, we use the term ‘‘phase’’ when we

refer to the solid or to the fluid part of the mixture,

while the term ‘‘component’’ is used to refer to any of

the constituents of the solid phase (cell populations

and ECM). When it is not necessary to distinguish

between phase and component, we simply use the term

‘‘species’’. The meaning of the subscripts used

throughout the article is as follows: s=solid phase,

fl=fluid phase, cells=cell component of the solid

phase, ECM= extracellular component of the solid

phase.

We let x and t denote the space and time variables,

respectively. We use the convention that the depen-

dence of all variables and model parameters on x and

t is left understood except otherwise stated.

The geometrical configuration of the mixture is

identified by the open bounded set X � Rd (d ¼ 3

unless otherwise specified). The domain X does not

evolve in time, rather, it is the amount of each species

at a point x 2 X that changes with t due to cell

proliferation and matrix deposition. This is the precise

sense of the concept of ‘‘growing mixture’’. From

now on, we denote by QTend :¼ X� ð0; TendÞ the

space-time cylinder in which the TE problem is

studied, Tend [ 0 being the final time of culture

process.

Referring to Fig. 3, for all t[ 0 we associate with a

generic point x 2 X a fixed representative elementary

volume (REV) Vx (see [73]) and denote by jVxj its d-
dimensional volume. Then, for each component i ¼
fl; s of the growing mixture, we define the volume

fraction

/iðx; tÞ ¼
jVx

i ðx; tÞj
jVxj 8x 2 X; 8t[ 0

as the time evolving ratio of the volume occupied by

the i-th component in the REV and the volume of the

REV itself. We also let
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/sðx; tÞ ¼ /cellsðx; tÞ þ /ECMðx; tÞ
8x 2 X; 8t[ 0:

ð1aÞ

According to the biochemical hypothesis a), we

consider three ACC populations: proliferating, ECM

secreting state and quiescent state, denoted by the

letters n, v and q, respectively. Then, we have

/cellsðx; tÞ ¼ /nðx; tÞ þ /vðx; tÞ þ /qðx; tÞ
8x 2 X; 8t[ 0:

ð1bÞ

Eventually, we denote by / ¼ /fl; /n; /v; /q;
�

/ECM�
T

the vector-valued function comprising the

volume fractions of the fluid phase, the three cellular

populations and the ECM.

The following assumptions on the mixture are also

considered.

Assumption 1 (Fully saturated mixture) The mix-

ture is fully saturated, i.e.

/sðx; tÞ þ /flðx; tÞ ¼ 1 8x 2 X; 8t[ 0: ð1cÞ

Relation (1c) is referred to as saturation condi-

tion [3, 51, 65] and excludes the possibility of the

formation of voids or air bubbles inside the growing

mixture.

Assumption 2 (Intrinsic incompressibility) All spe-

cies constituting the growing mixture have the same

(constant) mass density qw of the physiological

interstitial fluid assimilated to water [3, 26, 30, 36, 51].

This is not, in general, equivalent to assuming that the

whole mixture is incompressible (see [51] p. 629).

Assumption 3 (Closed mixture) The mixture is

closed, this meaning that the system does not

exchange mass with external mass sources or

sinks [51].

3 Kinematics of the growing mixture

From now on, we denote ‘‘solid matrix’’ the collec-

tion of solid phase constituents, that is, cells and

ECM. Then, we apply to the solid matrix the so–

called intermingled mixture constraint [2], stating

that all the solid matrix constituents experience the

same overall motion. This hypothesis amounts to

assuming the displacement and velocity vectors of

each constituent to coincide with those of the solid

matrix. Then, we denote by us ¼ usðx; tÞ and vs ¼

vsðx; tÞ ¼
o

ot
usðx; tÞ the displacement and velocity at

the time level t of any point x of the solid component of

the biomass, and by esðx; tÞ ¼ 1
2
ðrusðx; tÞ þ

ðrusðx; tÞÞTÞ the associated infinitesimal deformation

of the biomass volume surrounding the point x at time

t. The intermingled mixture constraint yields also the

following relation

eg ¼ es g ¼ cells;ECM: ð2aÞ

The growth process of each mixture component

(cellular growth and ECM secretion) is taken into

account by introducing the following decom-

position [33]

eg ¼ egg þ eeg; g ¼ cells;ECM; ð2bÞ

where egg is the infinitesimal growth tensor associated

with each solid constituent of the biomass, accounting

for the amount and the spatial orientation of the newly

deposited mass, and eeg is the elastic accommodation

tensor necessary to reinforce at each time level the

continuity of the whole solid upon growth. Finally, we

denote by

w ¼ vfl � vs ð2cÞ

the relative velocity [51, 65] of the fluid phase with

respect to the solid phase in the biomass, vfl being the

velocity of the interstitial fluid. For notational brevity,

from now on, we simply write u and e instead of us and

es, respectively.

Fig. 3 A schematic view of the computational domain X with a

detailed view of a typical REV where the various phases and

components of the growing mixture are identified
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4 Balance laws for the deformable growing

biomass

In this section we illustrate the set of conservation laws

that model the mechanobiological processes regulat-

ing biomass tissue growth. For further discussion and

analysis of mixture theory applied to tissue growth

modeling we refer the reader to [11, 36, 51].

4.1 Mass balance for mixture components

The mass balance equation for the growing mixture is

given by the following coupled system of PDEs in

conservation form to be solved in QTend :

o/

ot
þ div J/ ¼ Qð/; c;TÞ ð3aÞ

J/ ¼ /flvfl;/nvs;/vvs;/qvs;/ECMvs
� �T ð3bÞ

Q ¼ Qfl;Qn;Qv;Qq;QECM

� �T ð3cÞ

where J/ 2 R5�d is the flux matrix and Q is the net

mass production rate for which the following con-

straint holds, due to Assumption 3

X

f¼s;fl

Qf ¼ 0: ð3dÞ

Equation (3b) represents a phenomenological

description of the flux density of each species under

the effect of convective transport due to the fluid and

solid velocity, respectively. It is worth noting that in

cartilage tissue growth, cells do not typically exhibit a

significant diffusive motion, rather, they need a solid

support for surviving and for developing their func-

tional activities (property of anchorage-depen-

dence [47]). For this reason in the present work we

neglect the contribution to the flux density due the the

diffusive transport, unlike in other applications where

this term plays a significant role [37, 41, 49].

4.2 Momentum balance for mixture components

Under the assumption of negligible inertial terms and

absence of body forces and volumetric fluid mass

sources and sinks, the linear momentum balance

equation for the solid and fluid phases of the growing

mixture is expressed by the following PDEs in

conservation form to be solved in QTend :

divTfðu; p; /Þ þ pf ¼ 0 f ¼ s; fl ð4aÞ

Tsðu; p; /Þ ¼
X

g¼cells;ECM

/gTgðu; p; /Þ ð4bÞ

Tgðu; p; /Þ ¼ rgðu; /Þ � pI g ¼ cells;ECM

ð4cÞ

Tflðu; p; /Þ ¼ �/fl pI; ð4dÞ

where rg is the effective stress tensor of the compo-

nent g of the solid phase of the mixture, p ¼ pðx; tÞ is
the pressure exerted by the fluid phase and I is the

identity tensor. The isotropic stress �pI accounts for

the coupling, typical of poroelasticity, between the

flow of the fluid and the deformation of the solid

matrix, and in particular describes the contribution to

the stress due to the fluid pressure within the structure.

The quantities Tf, f ¼ s; fl, are the total stress

tensors of the solid and fluid phases, while pf are the

interphase forces [36]. As usual, we neglect the effec-

tive stress tensor of the fluid, meaning that we assume

that the internal fluid viscosity is negligible compared

with the friction between the fluid and the solid

matrix [4, 26, 51]. For the mathematical characteri-

zation of the forces pf we refer to [36] and [51]. We

observe that, for all t 2 ð0; TÞ and at all x 2 X, it holds

psðx; tÞ þ pflðx; tÞ ¼ 0: ð4eÞ

4.3 Total mass and momentum balance

for the growing biomass

The mass balance equation for the whole growing

mixture is obtained by summing each component in

system (3a), using (2c) and Assumptions 1 and 3:

div v ¼ 0; ð5aÞ

v ¼ /flvfl þ /svs ð5bÞ

where v is the composite velocity of the mixture (cf.

Eq. (2.4) of [51]). A simple manipulation allows us to

write Eq. (5b) as

o

ot
divuþ divð/flwÞ ¼ 0: ð5cÞ

In a similar manner, summing Eqs. (4) and using (4e),

we get the total momentum equation
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divTðu; p; /Þ ¼ 0 ð5dÞ

Tðu; p; /Þ ¼
X

g¼cells;ECM

/grgðu; /Þ � pI: ð5eÞ

where T is the total stress in the mixture.

4.4 Mass balance for nutrient concentration

The mass balance system (3) for the solid and fluid

phases of the growing mixture is accompanied by a

corresponding continuity equation for the nutrient

concentration (oxygen) c ¼ cðx; tÞ that is transported
throughout the growing on mixture by the interstitial

fluid. This continuity equation is expressed by the

following PDE in conservation form to be solved in

QTend :

oc

ot
þ div Jc ¼ Qcð/; cÞ ð6aÞ

Jc ¼ vflc� Dcrc; ð6bÞ

the interstitial fluid velocity vfl being computed

using (2c) as

vfl ¼ wþ vs ¼ wþ ou

ot
: ð6cÞ

The mathematical description of the oxygen diffusion

coefficient Dc adopted in this article is the so-called

Maxwell model [74], that allows to account, in a

volume-averaged sense, for the microscopic compo-

sition of the biomass. More precisely, we introduce the

effective diffusion coefficient

Dc :¼ Dc;fl
3k � 2/flðk � 1Þ
3þ /flðk � 1Þ ; k :¼ Keq

Dc;s

Dc;fl

whereDc;fl andDc;s represent the nutrient diffusivity in

the fluid and solid phase, respectively, while Keq is the

coefficient regulating local mass equilibrium between

nutrient concentration in the solid and fluid phases (see

[74] for a detailed discussion).

The time rate of oxygen consumed by the cellular

populations is modeled by a generalized form of the

Michaelis-Menten kinetics

Qcð/; cÞ ¼ �ðRn/n þ Rv/v þ Rq/qÞ
c

cþ K1=2
ð6dÞ

where Rg, g ¼ n; v; q, is the nutrient consumption rate

of the cellular population /g and K1=2 is the half

saturation constant. We refer to [63] and the literature

cited therein for a similar treatment of the oxygen

consumption term in the framework of a multi-phase

growing mixture.

5 Mass exchange pathways

The production terms Qg, g ¼cells,ECM, introduced

in Eq. (3c) mathematically describe the mechanisms

of addition and/or removal of mass for each species

constituting the biomass growing mixture.

The exchange between the different functional

cellular pools are supposed to be mediated by local

population concentration, local stress state, local

nutrient concentration and by natural decay times

(see Fig. 4). To quantify the stress-mediated effect we

proceed as follows. Let H(z) be the Heaviside function

such that HðzÞ ¼ 0 for z\0 and HðzÞ ¼ 1 for z ¼ 0,

z being a real number. Then, the stress-state dependent

effect is represented by Hðr � rÞ, r and r being an

indicator of the isotropy or anisotropy of the local

stress state and a threshold value, respectively. If r\r,

the local state of stress is considered as isotropic, in the

other case is considered anisotropic. According to our

mechanobiological picture, an anisotropic stress state

enhances transition towards the proliferative state,

whereas an isotropic stress state enhances transition

towards the ECM secreting state. We use a similar

approach to quantify the concentration-mediated

effect by introducing the indicator Hðc� cthrÞ, cthr
being a threshold concentration for cell activity. For

notational brevity, we let Hr :¼ Hðr � �rÞ and

Hc :¼ Hðc� cthrÞ.
The following exchange/production rate terms are

considered:

Fig. 4 Conceptual scheme of exchange pathways among

cellular populations (generalization of Fig. 5.3 in [67])
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– mitotic proliferation: we suppose cells in pool n

proliferate at a rate given by

/nð1� ð/n þ /v þ /q þ /ECMÞÞ
c

Ksat þ c
kg

¼ /n/fl

c

Ksat þ c
kg:

ð7aÞ

Relation (7a) is a phenomenological law in which

the term /n/fl keeps into account contact inhibi-

tion effects, while the term
c

Ksat þ c
kg is a

nutrient–dependent modulation (Monod

law [21]), Ksat being the half-saturation constant

and kg the maximum growth rate, respectively;

– ECM production rate: we consider here gly-

cosaminoglycan (GAG) as the main marker for

ECM accumulation [47] and we assume a simple

proportionality law between the total amount of

ECM and the secretion rate of GAG. Follow-

ing [47] we assume the ECM production rate to be

given by

/v

Vcell

c E kGAG max 0; 1� /ECM

/ECM;max

" #

: ð7bÞ

In the above relation, Vcell is the volume of a single

cell, the constant of proportionality E[ 1

accounts for the heterogeneous composition of

cartilagineous ECM (water for 70–80% of its wet

weight, collagen fibrils for 10–15% and GAG for

5%) [14], c is oxygen concentration and kGAG a

growth factor. The last term model the fact that

ECM synthesis attains its maximum value when no

extracellular matrix is present because more space

is available for matrix production. Then, as soon as

sythesized matrix accumulates at each point of the

biomass construct, the available space diminuishes

until /ECM reaches a maximum value /ECM;max

and matrix secretion ceases. Notice that in the

description of GAG secretion, we are assuming

that at the initial time level, biomass is constituted

by a uniform layer of cells and matrix (see [57] for

a similar approach). This corresponds to neglect-

ing the very initial phase where the seeded cells

proliferate and ‘‘pave’’ the scaffold wall, and is

consistent with the mathematical fact that a

continuum-based approach does not enable to

reproduce the subcellular mechanisms that regu-

late the early mitotic process. These latter pro-

cesses should be more properly described by

treating seeded cells as individual units that

behave according to cellular automata

schemes [16, 18, 27, 28].

– decay pathways: all cellular compartments may

evolve into quiescent (absence of cell activity due

to an insufficient oxygen intake [20, 67]) or

apoptotic phases (cellular death). Quiescence

occurs if nutrient concentration c falls below the

critical level cthr , whereas apoptotic phase is

related to age dependent cell death [60]. The time

rates of change between state a (a ¼ n; v; q) and

the inactive states (quiescence or apoptosis) are

kqui and kapo, respectively;

– exchange rate between pools n $ q: a first con-

tribution in the direction n ! q is regulated by the

mitotic characteristic inverse time constant 1=sm
and take the form

�/n

sm
: ð7cÞ

A second contribution is regulated by the prob-

ability rate bq!n that a cell in pool q enters into

pool n, enhanced by the mechanical factor Hr,

giving the rate term

�/qbq!nHr ð7dÞ

– exchange rate between pools v $ q: the probabil-

ity rate bv!q that a cell in pool v enters into pool q

and the opposite for bq!n are mediated by the

mechanical terms Hr and 1� Hr, respectively, to

signify that anisotropy favors proliferation while

isotropy ECM secretion.

According to the exchange laws illustrated above, the

production terms associated with cell populations are

defined as:

Qn ¼ �/n

sm
þ /qbq!nHr

þ /n/fl

c

Ksat þ c
kg � kqui/nð1� HcÞ

ð8aÞ

Qv ¼ �/vbv!qHr þ /qbq!v 1� Hrð Þ
� kqui/vð1� HcÞ � kapo/v

ð8bÞ
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Qq ¼
/n

sm
� /qbq!nHr þ /vbv!qHr

� /qbq!v 1� Hrð Þ � kqui/q 1� Hcð Þ � kapo/q:

ð8cÞ

QECM ¼ /v

Vcell

c E kGAG max 0; 1� /ECM

/ECM;max

" #

� kdeg/ECM:

ð8dÞ

To conclude the mathematical description of mass

exchange terms, we define the extracellular fluid

production Qfl in such a way to satisfy Assumption 3

and, consistently, relation (3d)

Qfl ¼ �
X

g¼cells;ECM

Qg: ð8eÞ

From a biophysical point of view this is equivalent to

assuming that mass exchanges occur only among

cells/ECM and fluid, meaning that dead cells and

degrading ECM are deteriorated into extracellular

fluid, and conversely that the latter is ‘‘consumed’’

whenever cells duplicate or secrete ECM [70]. From a

computational point of view, relation (8e) allows us to

eliminate the dependent variable /fl and the corre-

sponding mass balance equation from system (3a) as

done in [70], Sect. 2.2, in such a way that the fluid

volume fraction can be computed by simple post-

processing as

/fl ¼ 1�
X

g¼cells;ECM

/g: ð8fÞ

6 Bio-mechanical models for the deformable

growing biomass

In this section we provide a mathematical description

of the mechanobiological phenomena involving

growth processes (cell duplication and ECM secre-

tion). To this purpose, we introduce suitable bio-

mechanical models for the growth tensors in the

decomposition (2b) by extending the theory devel-

oped in [32] and [33].

6.1 Growth laws

We propose the following definitions of the growth

tensors:

e
g
#ðx; t;/Þ ¼ ghðx; t;/ÞI # ¼ v; q;ECM ð9aÞ

egnðx; t;/Þ ¼ gnðx; t;/Þdpolðx; tÞ 	 dpolðx; tÞ ð9bÞ

where the symbol 	 represents the tensor dyadic

product and gh, gn are growth coefficients for which a

model equation is provided below. Eqns. (9) state that

the mass increment of each mixture solid constituent is

isotropically deposited for the v, q and ECM compo-

nents, while is accumulated along a specific polariza-

tion direction, identified by the unit vector dpol, for

proliferating cells.

Biophysical motivations support our choice of the

growth laws (9). Firstly, according to the concept of

‘‘force isotropy’’ on the cell introduced in [45, 46],

cells that occupy the bio-synthesizing compartment (v

compartment) experience an isotropic adherence con-

dition and consequently tend to assume a spherical

shape (see Fig. 5, left) whereas cells that live in the

proliferating compartment (n compartment) are sub-

jected to an anisotropic adhesion state and tend to

elongate (see Fig. 5, right). Secondly, according to the

infinitesimal deformation growth theory developed

in [32], the deformation of an infinitesimal sphere of

biomass growing into an ellipsoid can be reasonably

described by an anisotropic growth tensor, while the

deformation of an infinitesimal sphere growing into a

larger sphere can be characterized by a isotropic

growth tensor. For the sake of simplicity, the infinites-

imal growth tensor for the species q and ECM are

supposed to be isotropic. The definition of dpol in

Eq. (9b) and the law for its time evolution is a delicate

Fig. 5 Cellular level (top): pictorial representation of the

isotropic/anisotropic adherence condition. Continuum level

(bottom): isotropic/anisotropic biomass growth
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issue. In [8], dpol is characterized according to the

dynamics of the evolution of the cell cytoskeleton,

which reorganizes itself according to its mechano–

sensing mechanisms. A simplified version of the

model proposed in [8], and also adopted in the present

work, is represented by the choice

dpolðx; tÞ ¼ deðx; tÞ 8x 2 X; 8t[ 0 ð9cÞ

where de is the normalized eigenvector of the

infinitesimal strain tensor es, associated with the

eigenvalue of largest module, which physically cor-

responds to the maximum principal dilatation of the

biomass around such a point [68].

The coefficients ggðx; t;/Þ, g ¼ n; v; q;ECM, give

a measure of the amount of mass of the cellular

population of type g deposited at time t at point x. To

determine these quantities, we proceed as in [32]

and [33] and require the following growth continuity

initial value problem to be satisfied for all x 2 X and

for g ¼ cells;ECM:

o

ot
Treggðx; t;/Þ ¼ cR;gðx; t;/Þ t 2 ð0;Tend� ð9dÞ

Treggðx; 0;/Þ ¼ 0: ð9eÞ

The quantity cR;gðx; t;/Þ represents the amount of

mass of the cellular population g deposited at time t at

point x per unit time and per unit reference mass.

According to the general indications illustrated in

Sect. 2.2.4 of [33], the growth laws are phenomeno-

logical equations that indirectly describe chemical

processes responsible for growth and can be typically

expressed as ‘‘synthesis’’ rate minus a ‘‘degradation’’

rate, that may include a mass conversion rate from one

constituent of the mixture to another. Also, the

constants that appear in a specific growth law may

depend parameterically on biological factors such as,

for example, the level of a specific growth factor.

Thus, based on the description carried out in Sect. 5,

we set cR;gðx; t;/Þ :¼ Qgðx; t;/Þ; g ¼ cells;ECM, in

such a way that the initial value problems that furnish

the characterization of the growth coefficients

become, for h ¼ v; q;ECM:

o

ot
ghðx; t;/Þ ¼

1

3
Qhðx; t;/Þ t 2 ð0; Tend� ð9fÞ

ghðx; t;/Þ ¼ 0 ð9gÞ

and

o

ot
gnðx; t;/Þ ¼ Qnðx; t;/Þ t 2 ð0; Tend� ð9hÞ

gnðx; t;/Þ ¼ 0 ð9iÞ

having used the identities TrðIÞ ¼ 3 and

Trðdpol 	 dpolÞ ¼ 1.

6.2 Constitutive equations for the mechanical

and fluidsubsystems

We assume that cells and ECM behave like linear

elastic solids, so that the effective stress tensors

associated with the solid components of the biomass

are defined as

rgðu; /gÞ ¼ 2lge
e
gðu; /gÞ þ kgTre

e
gðu; /gÞI

¼ 2lg eðuÞ � eggð/gÞ
� �

þ kgTr eðuÞ � eggð/gÞ
� �

I;

ð10aÞ

where kg and lg are the Lamé parameters of each

component of the solid phase, g ¼ n; q; v;ECM, and

eggð/gÞ are the growth strain tensors introduced in (9).

More sophisticated constitutive models might be

adopted [3, 24, 42, 51], but their use is beyond the

scope of the present work which is mainly devoted to

proposing a computationally feasible mechanobiolog-

ical model of in vitro cartilage tissue growth. We

assume the relative velocity in Eq. (5c) to be

expressed by the Darcy law (see, e.g., [11] and

references cited therein)

/flw ¼ �Kð/flÞrp ð10bÞ

where the isotropic permeability tensor Kð/flÞ ¼
/2
fl

CF
I

is defined as in [65],CF being a friction coefficient. To

provide a physically consistent characterization of CF

we apply the classic Stokes theory for viscous drag to

the biomass mixture and obtain

CF ¼ CF;cell/s ¼
6plfl
Acell

ð1� /flÞ ¼
3lfl
2R2

cell

ð1� /flÞ

ð10cÞ

Rcell and lfl being cell radius and interstitial fluid

dynamic viscosity, respectively, from which we get

Kð/flÞ ¼ Kref

/2
fl

1� /fl

I; Kref ¼
2

3

R2
cell

lfl
: ð10dÞ
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7 The mathematical model in 3D

In this section we summarize the mathematical model

for the multiphase mixture constituting the growing

tissue. We refer to Table 1 for the definition of all

model parameters and their quantitative value used in

numerical simulations. In what follows, we denote by

X an open bounded set of R3 representing the

computational domain in which the biomass growth

process physically takes place, and by C :¼ oX the

boundary ofX on which an outward unit normal vector

n is defined (see Fig. 6). In view of the definition of the

boundary conditions to be supplied to the mechanobi-

ological model, it is convenient to indicate by U :¼
ðu; pÞ; c;/f g the set of the dependent variables of the

problem. Then, for each u 2 U we assume that C is

divided into two disjoint portions, denoted by Cu
D and

Cu
N , such that C ¼ Cu

D [ Cu
N , and where Dirichlet and

Neumann boundary conditions are applied, respec-

tively. By doing so, if u ¼ ðu; pÞ the boundary

conditions are for the model block of Sect. 4.3, if u ¼
c the boundary conditions are for the model block of

Table 1 Numerical values of model parameters used in the simulation tests

Symbol Definition Value Units References

c0 O2 concentration for t ¼ 0 5� 10�6 g cm�3 This work

csat O2 saturation concentration 6:4� 10�6 g cm�3 [14]

cthr O2 threshold concentration 1:6� 10�6 g cm�3 [38]

capo O2 apoptosis concentration 3:2� 10�7 g cm�3 [38]

Keq O2 local mass equilibrium coefficient 0.1 - [13]

Dc;s O2 diffusivity in the solid phase 0:75� 10�5 cm2 s�1 [13]

Dc;fl O2 diffusivity in the fluid phase 1� 10�5 cm2 s�1 [13]

Vb Inlet velocity of perfusion fluid 50� 10�4 cm s�1 [14]

Tb Stress due to perfusion fluid 100 mPa [14]

lfl Fluid dynamic viscosity at 20
 C 1:002 � 10�2 g cm�1 s�1 [29]

Rn ¼ Rv O2 consumption rate for n/v-cells 3:9� 10�8
g ðcm3 sÞ�1 [63]

Rq O2 consumption rate for q-cells 10�8
g ðcm3 sÞ�1 This work

K1=2 O2 half saturation constant 3:2� 10�6 g cm�3 [63]

bA!B Transition rate from state A to state B 10�5 s�1 This work

kapo Apoptosis transition rate 3:858� 10�7 s�1 [63]

kqui Quiescence transition rate 3:858� 10�7 s�1 This work

kdeg ECM degradation rate 7:7� 10�7 s�1 [71]

kg0 Maximum specific cell growth rate 5:8� 10�6 s�1 [63]

kg1 ‘‘low’’ specific cell growth rate 1� 10�7 s�1 This work

kg2 ‘‘high’’ specific cell growth rate 1� 10�5 s�1 This work

E Expansion coefficient 20 [14]

kGAG GAG synthesis rate 8:61� 10�11
cm6 ðcell s gÞ�1 [14]

Ksat Monod saturation constant 1:927� 10�6 g cm�3 [15]

Dg Cells and ECM diffusion coefficient 1� 10�9 cm2 s�1 This work

kg Cells and ECM Lamé’s parameter 5:1937� 103 dyne cm�3 [64]

lg Cells and ECM Lamé’s parameter 1:8248� 103 dyne cm�3 [64]

/ECM;max Maximum ECM volume fraction 0.1 This work

Rcell Cell radius 5� 10�4 cm This work

Vcell Cell volume 5:236� 10�10 cm3 This work

sm Mitotic characteristic time 172800 s [65]

Kref Reference permeability 1:67 � 10�5 cm3s g�1 This work
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Sect. 4.4 whereas if u ¼ / the boundary conditions

are for the model block of Sect. 4.1. We notice that, in

general, there is no geometrical relation between the

various decompositions of the domain boundary

belonging to the same typology of boundary condition.

The sole requirement is that, for each considered

dependent variable, the union of the Dirichlet and

Neumann partitions is the whole domain boundary C.
For a similar treatment of the splitting of the domain

boundary we refer to [26] and [7].

Having specified the geometrical setting of the

biomass growth process, the mathematical model

proposed in the present article consists of the follow-

ing PDE subsystems:

Poroelastic IV-BVP for biomass: for given

/ ¼ /ðx; tÞ, find the solid displacement u, the fluid

friction velocity w and pressure p such that the

following equations are satisfied in QTend :

o

ot
divuþ div /flwð Þ ¼ 0 ð11aÞ

divTðu; p;/Þ ¼ 0 ð11bÞ

/flw ¼ �Kð/flÞrp; Kð/flÞ ¼ Kref

/2
fl

1� /fl

I ð11cÞ

Tðu; p;/Þ ¼
X

g¼cells;ECM

/grgðu;/Þ � pI ð11dÞ

rgðu;/Þ ¼ 2lgðeðuÞ � eggð/gÞÞ þ kgTrðeðuÞ � eggð/gÞÞI

ð11eÞ

eðuÞ ¼ 1

2
ðruþ ðruÞTÞ ð11fÞ

o

ot
gnðx; t;/Þ ¼ Qnðx; t;/Þ ð11gÞ

o

ot
ghðx; t;/Þ ¼

1

3
Qnðx; t;/Þ ð11hÞ

supplied with the following initial and boundary

conditions:

uðx; 0Þ ¼ u0ðxÞ in X ð11iÞ

uðx; tÞ ¼ uDðx; tÞ ðx; tÞ 2 Cðu;pÞ
D � ð0; TendÞ

� �
ð11jÞ

Tðu; p;/Þnðx; tÞ ¼ tNðx; tÞ ðx; tÞ 2 Cðu;pÞ
N � ð0; TendÞ

� �

ð11kÞ

where u0 : X ! R3 is the initial mixture displacement

in the domain whereas uD : Cðu;pÞ
D � ð0; TendÞ

� �
! R3

and tN : Cðu;pÞ
N � ð0; TendÞ

� �
! R3 are the given dis-

placement and traction fields defined on the decom-

position Cðu;pÞ
D [ Cðu;pÞ

N of the computational domain

boundary in the mechanical block of the model.

Mass balance IV-BVP for nutrient concentration:

for given w ¼ wðx; tÞ, u ¼ uðx; tÞ and / ¼ /ðx; tÞ,
find the nutrient concentration c and the nutrient flux

density Jc such that the following equations are

satisfied in QTend :

oc

ot
þ div Jc ¼ Qcð/; cÞ ð12aÞ

Jc ¼ vflc� Dcrc ð12bÞ

vfl ¼ wþ ou

ot
ð12cÞ

Qcð/; cÞ ¼ �ðRn/n þ Rv/v þ Rq/qÞ
c

cþ K1=2
ð12dÞ

supplied with the following initial and boundary

conditions:

cðx; 0Þ ¼ c0ðxÞ in X ð12eÞ

cðx; tÞ ¼ cDðx; tÞ ðx; tÞ 2 Cc
D � ð0; TendÞ

� �

ð12fÞ

Γ
D

(u,p)

Γ
N

(u,p)
Γ
N

(u,p)

tN

Ω

Γ
n

u=0

Fig. 6 Schematic representation of the 3D computational

domain. The boundary conditions for the mechanical block of

the model are considered. In this example, uD ¼ 0whereas tN is

nonvanishining only on a subset of Cðu;pÞ
N
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� Dcrc � nðx; tÞ ¼ gNðx; tÞ ðx; tÞ 2 Cc
N � ð0; TendÞ

� �

ð12gÞ

where c0 : X ! Rþ is the initial nutrient concentra-

tion in the domain whereas cD : Cc
D � ð0; TendÞ

� �
! R

and gN : Cc
N � ð0; TendÞ

� �
! R are the given concen-

tration and diffusive nutrient flux defined on the

decomposition Cc
D [ Cc

N of the computational domain

boundary in the nutrient block of the model.

Mass conservation IV-BVP for cellular popula-

tions: for given / ¼ /ðx; tÞ, c ¼ cðx; tÞ, T ¼ Tðx; tÞ
and u ¼ uðx; tÞ, find the volume fractions / such that

the following equations are satisfied in QTend :

o/

ot
þ div J/ ¼ Qð/; c;TÞ ð13aÞ

J/ ¼ /flvs;/nvs;/vvs;/qvs;/ECMvs
� �T ð13bÞ

vs ¼
ou

ot
ð13cÞ

/fl ¼ 1� /s ð13dÞ

where Q ¼ ½Qfl;Qn;Qv;Qq;QECM�T , with

Qn ¼ �/n

sm
þ /qbq!nHr

þ /n/fl

c

Ksat þ c
kg � kqui/nð1� HcÞ

ð13eÞ

Qv ¼ �/vbv!qHr þ /qbq!v 1� Hrð Þ
� kqui/vð1� HcÞ � kapo/v

ð13fÞ

Qq ¼
/n

sm
� /qbq!nHr þ /vbv!qHr

� /qbq!v 1� Hrð Þ � kqui/q 1� Hcð Þ � kapo/q:

ð13gÞ

QECM ¼ /v

Vcell

c E kGAG max 0; 1� /ECM

/ECM;max

" #

� kdeg/ECM

ð13hÞ

supplied with the following initial and boundary

conditions:

/ðx; 0Þ ¼ /0ðxÞ in X ð13iÞ

J/nðx; tÞ ¼ 0 ðx; tÞ 2 C� ð0; TendÞð Þ ð13jÞ

where /0 : X ! ðRþÞ5 is the initial distribution of

cellular volume fraction in the domain. Condi-

tion (13j) amounts to assuming that no cellular flux

is exchanged with the external environment during the

biomass growth process.

8 The mechanobiological model in 1D

In this section we formulate the proposed mechanobi-

ological model in a one-dimensional (1D) geometrical

configuration. This is a first step toward the simulation

of a realistic structure such as the 3D scaffolded

bioreactor used in the experimental analysis discussed

in [34]. The 1D-formulation is constructed by describ-

ing the biomass as a nonhomogeneous bar (fixed at one

endpoint) subject to a uniaxial state of mechanical

stress in such a way that each point of the bar

undergoes the same deformation. Then we consider

the following assumptions:

– all model variables depend on the sole spatial

coordinate x and on the time variable t;

– the solid displacement field u has only one

nonvanishing component, that is u ¼ ½u; 0; 0�T
with u ¼ uðx; tÞ;

– the strain tensor has only one nonvanishing

component, that is exxðu; tÞ ¼ ouðx; tÞ=ox;

Figure 7 shows the computational domain. The region

x\0 represents the scaffold wall, the open interval

X ¼ ð0; LÞ is the growing tissue whereas the region

x[ L corresponds to the interstitial fluid that brings

nutrient to the growing construct. We denote by C :¼
oX ¼ 0; Lf g the boundary of the computational

domain and by n the outward unit normal vector on

oX. We have n ¼ �1 at x ¼ 0 and n ¼ þ1 at x ¼ L.

The 1D mechanobiological model consists of the

following PDE subsystems:

Poroelastic IV-BVP for biomass for given /g and

gg, g ¼ cells;ECM; fl, find the solid displacement

u : QTend ! R, the fluid friction velocity w : QTend !
R and the pressure p : QTend ! R that satisfy the

Fig. 7 Schematic representation of the 1D scaffold-based

bioreactor
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following system of partial differential equations in

balance form:

oTxx

ox
¼ 0 ð14aÞ

o

ot

ou

ox
þ oV

ox
¼ 0 ð14bÞ

V ¼ �Kð/flÞ
op

ox
ð14cÞ

Txx ¼ HA/s

ou

ox
� p� HA/ngn � HB

X

g¼v;q;ECM

/ggg ð14dÞ

where

Kð/flÞ ¼ Kref

/2
fl

1� /fl

ð14eÞ

is the tissue permeability with Kref defined in

Eq. (10d) (right) whereas HA ¼ kþ 2l is the so-

called aggregate modulus [69] with HB ¼ 3kþ 2l.
To close the problem, we specify the following initial

and boundary conditions:

uðx; 0Þ ¼ u0ðxÞ in X ð14fÞ

uð0; tÞ ¼ 0 8t 2 ð0; TÞ ð14gÞ

TxxðL; tÞ � n ¼ TbðtÞ 8t 2 ð0; TÞ ð14hÞ

pð0; tÞ ¼ 0 8t 2 ð0; TÞ ð14iÞ

VðL; tÞ � n ¼ VbðtÞ 8t 2 ð0; TÞ: ð14jÞ

Mass balance IV-BVP for nutrient concentration:

for given u, V and /g, g ¼ n; v; q; fl, find the oxygen

nutrient concentration c : QTend ! Rþ that satisfies the

following system of partial differential equations in

balance form:

oc

ot
þ oJc

ox
¼ Qcðe/; cÞ ð15aÞ

Jc ¼ vflc� Dc

oc

ox
ð15bÞ

where:

w ¼ V

/fl

ð15cÞ

vfl ¼ wþ ou

ot
ð15dÞ

and

Dc ¼ Dc;fl
3k � 2/flðk � 1Þ
3þ /flðk � 1Þ ; k :¼ Keq

Dc;s

Dc;fl
ð15eÞ

Qcðe/; cÞ ¼ �ðRn/n þ Rv/v þ Rq/qÞ
c

cþ K1=2

: ð15fÞ

To close the problem, we specify the following initial

and boundary conditions:

cðx; 0Þ ¼ c0ðxÞ in X ð15gÞ

oc

ox

����
x¼0

¼ 0 8 t ð15hÞ

cðL; tÞ ¼ cextðtÞ: ð15iÞ

Mass conservation IV-BVP for cellular popula-

tions: for given u, p and c, find the volume fractions

e/ ¼ /n; /v; /q; /ECM

� �T
: ðQTend Þ

4 � ðRþÞ4 ð16Þ

and /fl : QTend ! Rþ that satisfy the following system

of partial differential equations in balance form:

oe/
ot

þ
oJe/
ox

¼ Qðe/; c;TÞ ¼ ðPðe/; c;TÞ � Cðc;TÞÞe/

ð17aÞ

Je/

� �

g
¼ /gvs � Dg

o/g

ox
g ¼ cells;ECM

ð17bÞ

where vs ¼ ou=ot is the solid phase velocity, the

production terms are:

Pð/; c;TÞ ¼ ð17cÞ

/fl

c

Ksat þ c
kg; 0; bq!nHr; 0; 0; 0; bq!v 1� Hrð Þ; 0;

	

1

sm
; bv!qHr; 0; 0; 0;

1

Vcell

c E kGAG

max 0; 1� /ECM

/ECM;max

" #

; 0; 0

#

ð17dÞ
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Cðc;TÞ ¼ ð17eÞ

diagð 1
sm

þ kquið1� HcÞ; bv!qHr þ kquið1� HcÞ þ kapo;

bq!nHr þ bq!v 1� Hrð Þ þ kqui 1� Hcð Þ þ kapo; kdegÞ:
ð17fÞ

and the fluid fraction is computed as

/fl ¼ 1�
X

g¼n;v;q;ECM

/g: ð17gÞ

To close the problem, we specify the following initial

and boundary conditions:

e/ðx; 0Þ ¼ e/0ðxÞ in X ð17hÞ

o/g

ox

����
x¼0

¼ 0 8 t g ¼ n; v; q;ECM ð17iÞ

o/g

ox

����
x¼L

¼ 0 8 t g ¼ n; v; q;ECM: ð17jÞ

The boundary conditions (17i)- (17j) express the fact

that cellular phases can flow out of the biomass only

because of the presence of an advective field.

8.1 Indicator of the isotropy of the local stress

state

In the 1D configuration, the total stress tensor T can be

decomposed into the sum of isotropic and anisotropic

components T ¼ Tiso þ Taniso given by:

Tiso ¼ k /s

ou

ox
� gn/n


 �
I

� 2

3
lþ k


 � X

g¼v;q;ECM

gg/gI� pI
ð18aÞ

Taniso ¼ 2l /s

ou

ox
� gn/n


 �
dpol 	 dpol; ð18bÞ

where dpol is the unit vector ½1; 0; 0�T . We use Taniso to

measure the degree of anisotropicity of the stress state

at any point x of the mixture and at any time t. Namely,

we define the parameter r as

rðx; tÞ ¼ kTanisoðx; tÞkF
2l

¼ /sðx; tÞ
ouðx; tÞ

ox
� gnðx; tÞ/nðx; tÞ

����

����

ð18cÞ

where k � kF is the Frobenius norm. We can give a

mechanical interpretation of (18c) by studying the

Mohr circle at point (x, t). The principal components

of T are:

rI ¼ HA/s

ou

ox
� p� HAgn/n � HB

X

g¼v;q;ECM

gg/g

ð18dÞ

rII ¼ rIII ¼ k/s

ou

ox
� p� kgn/n � HB

X

g¼v;q;ECM

gg/g;

ð18eÞ

from which it follows that the Mohr circle at (x, t) has

center C ¼ ðrI þ rIIÞ=2 and radius equal to the

maximum total shear stress at (x, t)

smaxðx; tÞ ¼
rIðx; tÞ � rIIðx; tÞ

2

¼ l /sðx; tÞ
ouðx; tÞ

ox
� gnðx; tÞ/nðx; tÞ


 �
:

Comparing the latter relation with (18c) we conclude

that the indicator of the local stress state anisotropy

can be written as

rðx; tÞ ¼ jsmaxðx; tÞj
l

: ð18fÞ

We also need to characterize an appropriate value for

the threshold parameter �r representing the level of

hydrodynamic shear stress that induces metabolic

activity of the cell population n and therefore separates

the isotropic regime from the anisotropic regime.

In [57, 58] it is shown that hydrodynamic shear below

10 mPa may promote GAG synthesis, so that,

coherently with (18f), we assume

�r ¼ 10mPa

l
: ð18gÞ

9 Numerical approximation of the 1D

mechanobiological model

Solving in closed form the mechanobiological model

proposed in this article is a very difficult task because

of the strong nonlinear nature of the problem. There-

fore, in this section we illustrate the approximation

methods that are used to solve numerically the

equation system in the 1D setting of Fig. 7.
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9.1 Computational algorithm

Prior to discretization, we need to reduce the solution

of the whole coupled system to the solution of a

sequence of linearized equations of simpler form. For

this purpose we set

U ¼ u; p;/n;/v;/q;/ECM; c
� �T ð19aÞ

and subdivide the time interval ½0; Tend� into NT � 1

uniform subintervals of lengthDt ¼ Tend=NT , in such a

way that the discrete time levels tk ¼ kDt,
k ¼ 0; . . .;NT , are obtained. Then, for each

k ¼ 0; . . .;NT � 1, we set Uð0Þ :¼ Un and for all

m� 0 until convergence we perform the fixed point

iteration schematically illustrated in Fig. 8. The

algorithm consusts of two nested loops, a temporal

outer loop and a spatial inner loop. For each step m of

the inner loop we solve in sequence three linear PDE

system blocks. For the convenience of the reader, for

each substep of the inner loop ,we indicate in Fig. 8 the

equations that are solved in the step referring to their

numbering in Sect. 8. In order, the subproblems to be

solved are: a poroelastic system for biomass displace-

ment and fluid pressure, an advection–diffusion–

reaction (ADR) system for oxygen concentration and

an ADR system for cellular populations and ECM. For

each system we indicate on the right of the corre-

sponding block the values of the dependent variables

that are given inputs whereas the updated values of the

dependent variables that are returned as outputs of the

block are indicated on the right of the downward arrow

that exits out the block. We notice that as soon as a

newly updated variable is available such variable is

immediately plugged into the successive block as

input variable. For this reason the algorithm of Fig. 8

can be regarded as a nonlinear block Gauss-Seidel

method (see [52] Chapt. 7).

Two remarks are in order about the above described

solution map. The first remark concerns the linear

poroelastic system. The weak formulation of this

problem leads to solving a saddle-point problem in

block symmetric form to which the abstract analysis of

[53], Chapt. 7 and [9] can be applied to prove existence

and uniqueness of the solution pair uðmþ1Þ; pðmþ1Þ. The
second remark concerns with the two linear ADR

problems to which the application of the maximum

principle (see [59]) allows to prove nonnegativity of

the solutions cðmþ1Þ and /ðmþ1Þ
g , g ¼ cells;ECM.

9.2 Finite element discretization

The computational procedure described in Sect. 9.1

leads to solving two kinds of BVPs: (1) a saddle-point

problem; (2) two ADR equations. We numerically

solve (1) and (2) using the Galerkin finite element

approximation scheme on a family of partitions

T hf gh[ 0 of the computational domain, h being the

discretization parameter (see [53]). In the case of the

saddle point problem (1) we employ piecewise linear

finite elements on T h for both solid displacement and

fluid pressure. Equal-order interpolation for u and

p does not give rise to numerical instabilities as it

would be the case if the Stokes equations for an

incompressible fluid were to be solved (cf. [53],

Chapt. 9), because in the present model the variable

U(0) = Un

u(m+1)

p(m+1)

c(m+1)

Φ(m+1)

m m+1

Φ = Φ(m)

Φ = Φ(m)

u = u(m+1)

p = p(m+1)

Φ = Φ(m)

u = u(m+1)

p = p(m+1)

c = c (m+1)

ADR O2 block

ADR cell block

Convergence?

Yes

No

m=0

Inner loop

Outer loop

k=0

k k+1

Eqns. 14(a)−14(j)

Poroelastic block

Eqns. 15(a)−15(j)

Eqns. 17(a)−17(j)

Fig. 8 Solution map
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p is not a Lagrange multiplier (as in the Stokes

system), rather, it is the solution of an elliptic Darcy

problem (for a similar treatment see [12]). In the case

of the ADR equation we employ for the approximation

of the concentration and of the cellular volume

fractions the primal-mixed finite element discretiza-

tion scheme with exponential fitting stabilization

proposed and investigated in [62]. This choice is

taken because it ensures that the computed numerical

solutions satisfy a strict positivity property even in the

case of a strongly advective regime. Moreover, it can

be checked that, if advective terms do not play a major

role compared to oxygen molecular diffusion in the

biomass, then the effect of the stabilization introduced

by the primal-mixed method of [62] becomes negli-

gible so that the accuracy of the scheme is not spoiled.

This, instead, would not be the case if the classic

upwind stabilization were adopted (see [10] for a

discussion of this important issue).

10 Simulation tests

In this section we show the numerical results obtained

by solving the 1D problem with the computational

algorithm described in Sect. 9. We denote henceforth

by Tb and Vb the normal stress and normal velocity

externally applied at x ¼ L whereas cext is the external

oxygen concentration. Two sets of simulation tests are

performed. In the first set of simulations we set Tb ¼
Vb ¼ 0 with the aim of investigating a static culture

environment (see [57, 58]). In the second set of

simulations we set Tb ¼ 100mPa and Vb ¼ 50lms�1

as in [14]. These values are characteristic of a culture

in a perfusion bioreactor where an external hydrody-

namic shear stress is applied [55, 58, 63].

The first investigated question is the effect of the

input model parameter amount A of cell density at the

beginning of the culture process (t ¼ 0) and at the pore

wall (x ¼ 0). For cells and ECM we set

/gðx; 0Þ ¼ Ag expð�x=LdÞ, g ¼ n; v; q;ECM, with

Ld ¼ L=5, and for each set of simulations we use the

following values of A:

(IC1) An ¼ 0:005, Ag ¼ 0:001 g ¼ v; q;ECM;

(IC2) An ¼ 0:05, Ag ¼ 0:01 g ¼ v; q;ECM.

The above values of An and Ag agree with the

biophysical evidence that at the beginning of the

growth process, proliferating cells are present in larger

amount than the other cellular populations.

The second investigated question is the effect of the

input model parameter cellular growth rate kg. In our

computations we use two values of this parameter, kg1
and kg2 (cf. Table 1). These two values are selected by

comparison with the maximum specific cell growth

rate kg0 used in [63] in such a way that kg\kg0
corresponds to ‘‘low growth regime’’ whereas kg [ kg0
corresponds to ‘‘high growth regime’’.

The third investigated question is the effect of the

input model parameter maximum value of the external

oxygen concentration cext supplied to the growing

structure by the surrounding environment. To deter-

mine the effect of oxygen availability on biomass

growth we set cextðtÞ ¼ csat and cextðtÞ ¼ cthr for all

t 2 ½0; Tend�, csat and cthr being the saturation and

threshold oxygen concentration, respectively (see

Table 1).

For a synthetic representation of the isotropy

indicator r, we define the following (equivalent)

parameter n ¼ nðrÞ as nðrÞ ¼ 1 if r� �r and nðrÞ ¼ 0

if r[ �r. In the remainder of the discussion, no plot is

reported for the fluid volume fraction /fl because this

variable can be computed by post-processing

using (8f). Simulations are run over the time interval

½0; Tend�, with Tend ¼ 30 days, and the one-dimen-

sional plots show the time evolution of the solid and

fluid mixture components at the spatial coordinate

x ¼ L=2. The values of model parameters used in the

numerical experiments are reported in Table 1.

11 Discussion of simulation results

In this section we address a critical discussion of the

more significant outcomes of the simulations of the

model illustrated in Sect. 8. The adoption of the 1D

setting has three points of strength. The first point of

strength is that the simplicity of the geometry permits

a verification of reliability of model predictions based

on biophysical intuition. The second point of strength

is that, despite being simple, the 1D setting preserves

the main features of the 3D biomass growth process,

permitting a comparison with experimental measure-

ments. The third point of strength is that it is relatively

easy to single out the presence of critical parameters in

the mathematical formulation and investigate their
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quantitative influence on the evolution of mixture

components.

1. The illustrated numerical results indicate that the

in vitro cell cultivation process is strongly sensi-

tive to variations of (1) the initial seeding density

of cells, (2) the value of the maximum growth rate

and (3) the mechanical boundary conditions. In

particular, the amount of seeded cells turns out to

be determinant for cell responsiveness: initial cell

density should be high enough to ensure optimal

conditions for proliferation, but not so high that

grow factors are rapidly depleted from the

medium and the contact inhibition phenomenon

prevents the formation of new colonies (see

Fig. 13). To furtherly support this conclusion,

Fig. 12 shows that at high seeding density no

significant change in cell number is predicted by

the model in the first stage of the culture because

proliferating cells fluctuate around a mean value,

that represents the average level of proliferation

measured in the first 2 weeks of the experiments

(see Fig. 3c of [11]). Furthermore the value of

parameter kg influences the long-term behavior of

the biomass. Model simulations indicate that if kg
is smaller than the reference value kg;0, cell

metabolic activity and ECM synthesis signifi-

cantly decrease in the cultured construct and are

completely exhausted at about 10 days of culture

(Figs. 9, 11 top). On the contrary, model predic-

tions show that if the maximum growth rate

exceeds the reference value, cell and ECM

volumetric fractions increase until convergence

to a finite value that represents a stable steady state

of the mathematical system (Figs. 10, 11 bottom).

This finding represents a favorable result from the

experimental point of view, because it predicts the

formation, at the end of the cultivation and under

specific conditions, of the bio-artificial texture to

be used for replacing damaged tissues, that

constitutes the real aim of TE. A similar objective

can be reached by conveniently assigning the

mechanical boundary conditions at the interface

between the biomass construct and the interstitial

fluid. Model results indicate that when the

biomass is stimulated by both external fluid

velocity and pressure, even if kg is tuned on a

under-threshold value, the amount of cells and

ECM in the construct remains considerable until

Fig. 9 Temporal evolution of cellular populations and ECM in the

static culture for cext ¼ csat. Initial condition IC1; kg ¼ kg1. Solid

line: /n; dashed line: /v; dotted line: /q; dash-dot line: /ECM

Fig. 10 Temporal evolution of cellular populations and ECM in

the static culture for cext ¼ csat. Initial condition IC1. Top:

kg ¼ kg2. Bottom: kg ¼ kg2, zoom of the first 8 days of culture.

Solid line: /n; dashed line: /v; dotted line: /q; dash-dot line:

/ECM
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the end of the simulation (see Fig. 14 top panel).

Such a behavior is mainly due to the fact that the

external force exerted by the fluid gives rise to an

anisotropic stress state that instantaneously prop-

agates throughout the domain, as shown in Fig. 16

bottom, maintaining the anisotropic mechanical

configuration in both low and high growth

regimes. This mechanical stimulus is the sole

responsible of the strong mitotic functional activ-

ity occurring within the biomass because, as

evidenced in Fig. 15, oxygen consumption is

practically absent. This outcome reinforces the

notion that mechanical stimulation in perfused

cultures may promote chondrogenesis and ECM

production [17, 57, 58]. Actually, in order to

achieve this optimal result, nutrient concentration

at the fluid-biomass interface should not fall under

a critical level otherwise cell functionality could

be rapidly reduced until cell apoptosis (see Fig. 17

top). In these conditions, cell survival is ensured

only if the growth rate kg is large enough (Fig. 17

bottom).

Fig. 11 Temporal evolution of cellular populations and ECM in

the static culture for cext ¼ cthr. Initial condition IC1. Top:

kg ¼ kg1. Bottom: kg ¼ kg2. Solid line: /n; dashed line: /v;

dotted line: /q; dash-dot line: /ECM

Fig. 12 Temporal evolution of cellular populations and ECM in

the static culture for cext ¼ csat. Initial condition IC2. Top:

kg ¼ kg1. Bottom: kg ¼ kg2. Solid line: /n; dashed line: /v;

dotted line: /q; dash-dot line: /ECM

Fig. 13 Spatial and temporal evolution of oxygen concentration

in the static culture for cext ¼ csat. Initial condition IC2. Left:

kg ¼ kg1. Right: kg ¼ kg2. In the case of initial condition IC1 we

observe a similar behavior of cox except for a delayed decay
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2. The behavior of the solid mixture components is

in excellent agreement with the experimental

trends obtained by cultivation of engineered

tissues in bioreactors. In particular, the temporal

evolution of construct cellularity and ECM con-

tent, especially for an under-threshold value of kg,

Fig. 14 Temporal evolution of cellular populations and ECM in

the perfused culture for cext ¼ csat. Initial condition IC1. Top:

kg ¼ kg1. Bottom: kg ¼ kg2. Solid line: /n; dashed line: /v;

dotted line: /q; dash-dot line: /ECM

Fig. 15 Spatial and temporal evolution of oxygen concentration

in the perfused culture for cext ¼ csat. Initial condition IC1. Left:

kg ¼ kg1. Right: kg ¼ kg2

Fig. 16 Spatial and temporal evolution of parameter n in the

static culture (top) and in the perfused culture (bottom) for

cext ¼ csat. Initial condition IC1. Top left: kg ¼ kg1. Top Right:

kg ¼ kg2. Bottom: kg ¼ kg1; kg2

Fig. 17 Temporal evolution of cellular populations and ECM in

the perfused culture for cext ¼ cthr. Initial condition IC1. Top:

kg ¼ kg1. Bottom: kg ¼ kg2. Solid line: /n; dashed line: /v;

dotted line: /q; dash-dot line: /ECM
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agree with experimental results shown in several

papers [17, 23, 48, 72].

3. The characterization of the (an)isotropicity of the

biomass intrinsic stress state through the equiva-

lent parameter n demonstrated to be a successful

strategy to model the mechanical regulation of

culture progression and to link the mechanisms

occurring at the micro-scale level to the macro-

scopic functioning of the growing tissue

(see [43]). Model predictions indicate that the

parameter n is an effective indicator of the

propagation of the isotropic and anisotropic waves

within the construct and allows an easy and

immediate identification of the adhesion mecha-

nisms developing at the single cell-level, that,

accordingly, drive the evolution of the volumetric

fraction /v and /n respectively.

12 Conclusions and future perspectives

In the present article we propose a novel mathematical

formulation based on the continuum assumption to

describe the biomechanical sensitivity of articular

chondrocytes. The natural application of our model is

Tissue Engineering, a continuously growing discipline

within the wider area of Regenerative Medicine, in

which the control of cell response to multi-factorial

stimuli is of utmost importance to obtain products

suitable to clinical practice. However, it is worth

noting that the proposed scheme may be used as well

to describe more general settings in Cellular Biology,

for example, the expansion of staminal cells.

The principal novelty of our contribution is the

development of a model based on the use of Partial

Differential Equations (PDEs) that incorporates the

concept of ‘‘force isotropy’’ on the cell within the

general and well established framework of poroelastic

theory of mixtures and of cell population models.

Specifically, the model translates into a simplified

mathematical formalism, based on the use of suitably

parametrized Heaviside functions, how the induced

cytoskeletal tensional states trigger signalling trans-

duction cascades regulating functional cell behavior,

for example, the traslocation of specific transcription

factors in the nucleus. According to the concept of

force isotropy, it turns out that if cell adhesion-

mediated traction forces have approximately the same

strength over the cell surface, then the cell nucleus

tends to maintain a roundish morphology, otherwise

the cell nucleus tends to elongate. In the first case, the

cell tensile condition is defined as ‘‘isotropic

cytoskeletal tension’’ whereas in the second case the

cell tensile condition is defined as ‘‘anisotropic

cytoskeletal tension’’.

Having defined the cytoskeletal stress characteri-

zation at the single cellular level, the next step of our

approach is to build upon the concept of continuum-

based approach to extend the above described descrip-

tion to the local stress tensor associated with the

biological construct to mathematically represent the

isotropic or anisotropic cell adhesion state. To this

purpose, we generalize in a natural manner the

previous definitions prescribing that if the anisotropic

part of the local stress tensor is lower than a fixed

threshold then the local stress state of the system is

isotropic otherwise the local stress state of the system

is anisotropic.

The final step of our model construction is to

incorporate the above illustrated mechanobiological

scheme within the setting of the theory of poroelas-

ticity of a mixture composed by a solid and a multi-

component fluid phases. The mixture represents the

cellular construct in which several different cellular

populations are well-mixed and oxygen delivery and

consumption is taken into account to regulate in a

dynamical manner the progressive fate of the evolving

(macroscopic) tissue. The overall mathematical for-

mulation consists of a system of conservation laws

(mass and linear momentum) for the phases and

components of the mixture that includes stress state

and oxygen tension as main determinants of cellular

culture evolution.

A thorough investigation of the PDE system is

critically performed in a simplified 1D setting to allow

an easy preliminary validation of the formulation.

Extensive simulation tests outline a generally sound

response of the computational model with respect to

biophysical conjectures. In particular, numerical results

indicate that the in vitro cell cultivation process is

strongly sensitive to variations of (1) the initial seeding

density of cells, (2) the value of the maximum growth

rate and (3) the mechanical boundary conditions.

Below, we mention several future steps that we

intend to take in the prosecution of this promising

research activity.
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1. A stability analysis of the homogeneous steady

states of the dynamical system that describes the

conservation of mass of the solid mixture com-

ponents. Such a study will allow us to characterize

the admissible range of values of model consti-

tutive parameters that ensures the biophysical

consistency of the proposed mathematical repre-

sentation, in the same spirit as in [41] and [37].

2. The introduction of a visco-elastic component in

the constitutive law for the total stress (as recently

done in [7]). This extension of the model will

allow us to perform a validation of the model and

of the computational tool against available ana-

lytical solution and data (see [69]).

3. The inclusion of other mixture constituents, such

as proteoglycan and collagen as done in [33]. This

extension of the model will allow us to provide a

more realistic biomechanical description of the

growing tissue.

4. The extension of the computational algorithms to

treat a fully three-dimensional representation of the

scaffold pore to allow a deeper model validation

against previous existing simulation results and

experimental data (see, e.g., [19, 34, 56]). In

particular, a 3D implementation of the model could

provide a very interesting in silico scheme to

simulate different levels of isotropy/anisotropy that

otherwise should be reproduced in vitro at the price

of complex engineering strategies, as described

in [34]. Once a wide range of simulated mechan-

ical configurations is available, it should be easier

to relate cell response to the external mechanical

stimuli and, consequently, to predict cell behavior

in terms of cell adhesion, proliferation and differ-

entiation. The 3D model could also be used to

reproduce one pore of the microscaffold structures

recently developed in [44] to mimic the native

cellular environment. Cells confined into microp-

ores are subject to similar environmental cues as

in vivo, so that the behavior predicted by 3D

computations could be directly compared with the

in vivo cellular processes. Of course, passing to a

1D implementation to a fully 3D simulation tool

requires to face and solve, at least, four computa-

tional challenges. The first challenge is the need of

a flexible tool for the generation of an accurate

geometrical description of the structure to be

simulated. The preferable choice is to use tetrahe-

dral elements and to this purpose a very good 3D

mesh generator is the open-source program

gmesh. The second challenge is the selection of

a stable and accurate time-advancing discretization

method. The obvious choice is to continue to emply

the Backward Euler scheme. If a more accurate

method is in order, the choice might fall on the

second-order Trapezoidal or TR-BDF2 methods

(for description and analysis, see [52], Chapter 11).

The third challenge is the need of extending the

selection of the stable and accurate finite element

spaces used to approximate the various subprob-

lems to be solved with the fixed-point map

illustrated in Sect. 9.1. To this purpose, the Mini

element and the Taylor-Hood pair are the best

options for an accurate and stable treatment of the

poroelastic equations, whereas the Edge Averaged

Finite Element scheme investigated in [75] is a

very effective method for accurately dealing with

sharp layers in the nutrient concentration and/or

cellular population profiles while ensuring the

positivity of the computed solution. In the per-

spective of implementing the mechanobiological

model within a 3D finite element framework a

possible interesting programme might be to exploit

the facilities of the software MP-FEMOS (Multi-

Physics Finite Element Modeling Oriented Simu-

lator) that has been developed by one of the

authors [1, 39, 40, 61].
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34. Laganà M, Raimondi MT (2012) A miniaturized, optically

accessible bioreactor for systematic 3D tissue engineering

research. Biomed Microdevices 14:225–234

35. Lemon G, King JR (2007) Multiphase modelling of cell

behaviour on artficial scaffolds: effects of nutrient depletion

and spatially nonuniform porosity. Math Medi Biol 24:

57–83

36. Lemon G, King JR, Byrne HM, Jensen OE, Shakesheff KM

(2006) Mathematical modelling of engineered tissue growth

using a multiphase porous flow mixture theory. J Math Biol

52:571–594

37. Maini PK, Sherratt JA, Olsen L (2002) Mathematical

models for cell-matrix interactions during dermal wound

healing. Int J Bifurc Chaos 12(9):2021–2029

Meccanica (2017) 52:3273–3297 3295

123



38. Mara A, Nava M (2011) Modellizzazione multifisica del

processo di rigenerazione tessutale all’interno di un biore-

attore perfuso. Master Thesis, Politecnico di Milano

39. Mauri AG, Bortolossi A, Novielli G, Sacco R (2015) 3D

finite element modeling and simulation of industrial semi-

conductor devices including impact ionization. J Math Ind

5:1–18. doi:10.1186/s13362-015-0015-z

40. Mauri AG, Sacco R, Verri M (2014) Electro-thermo-chemical

computational models for 3D heterogeneous semiconductor

device simulation. Appl Math Model 39(14):4057–4074

41. Moreo P, Gaffney EA, Garcia-Aznar JM, Doblaré M (2010)
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