TTG1 proteins regulate circadian activity as well as epidermal cell fate and pigmentation

Chiara A. Airoldi, Timothy J. Hearn, Samuel F. Brockington, Alex A. R. Webb ${ }^{*}$ and Beverley J. Glover ${ }^{*}$

Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
*For correspondence: bjg26@cam.ac.uk, 441223 333938; aarw2@cam.ac.uk, 441223333948

Abstract

The Arabidopsis genome contains three members of the TTG1 (TRANSPARENT TESTA GLABRA 1) WDR subgroup of the WDR family, with very different reported roles. TTG1 is a regulator of epidermal cell differentiation, and of the production of pigments, while LWD1 (LIGHTREGULATED WD1) and LWD2 (LIGHT-REGULATED WD2) are regulators of the circadian clock. We discovered a new central role for TTG1 WDR proteins as regulators of the circadian system, demonstrated by a lack of detectable circadian rhythms in a triple $l w d l l w d 2 t t g l$ mutant. We have demonstrated that there has been subfunctionalisation by protein changes within the angiosperms, with some TTG1 WDR proteins developing a stronger role in circadian clock regulation while losing the protein characteristics essential for pigment production and epidermal cell specification, and others weakening their ability to drive circadian clock regulation. Our work demonstrates that even where proteins are very conserved, small changes can drive big functional differences.

Introduction

A central paradigm in evolutionary developmental biology is that functional novelty arises through changes to the regulation and expression, both spatially and temporally, of otherwise well
conserved proteins ${ }^{1,2,3}$. Evolution of coding sequences is considered unlikely to occur, as mutations to essential proteins are most likely to be deleterious ${ }^{3}$. This is particularly true of transcription factors and other proteins involved in transcriptional regulation, as the loss of a protein necessary for the downstream regulation of multiple target genes is unlikely to be selectively advantageous. We have been investigating the WD-repeat (WDR) protein family to understand how new functions can arise in highly conserved families of transcriptional regulators. The WDR protein family plays an important role in the transcriptional regulation of many processes in plants. WDR proteins are a family in the β propeller protein group characterized by the presence of a 40 residue core region delineated by a glycine-histidine (GH) dipeptide and a tryptophan-aspartate (WD) dipeptide ${ }^{4}$. This motif is repeated in tandem between four and sixteen times in each protein. WDR proteins facilitate protein-protein interactions but have no direct DNA binding activity ${ }^{5}$.

In Arabidopsis, extensive research has demonstrated that the WDR protein TTG1 is central to all aspects of epidermal cell fate through its role in forming the MBW complex with MYB and bHLH transcription factors. TTG1 positively regulates trichome formation, anthocyanin production, seed coat pigmentation and seed coat mucilage production, and negatively regulates root hair formation ${ }^{5,6,7,8,9}$. In the MBW complex the WDR protein functions as a scaffold, on which the DNA-binding MYB and bHLH proteins interact to generate the transcriptional complex, and in some cases WDR and MYB proteins compete to bind the bHLH protein, with bHLH-WDR dimers activating a different cascade of downstream genes to bHLH-MYB dimers ${ }^{10,11}$.

More recently two further genes belonging to this small WDR subfamily have been characterized in Arabidopsis, and named LIGHT REGULATED WD1 (LWD1) and LWD2 $2^{12,13}$. These proteins function in transcriptional regulation of the central circadian clock component CIRCADIAN CLOCK ASSOCIATED 1 (CCA1). The lwdllwd2 double mutant has a short circadian period and the plants are early flowering. Regulation is achieved in part by binding to TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 ${ }^{14}$, which promote expression of

CCA1. The LWD1 and LWD2 genes are fully redundant, and a mutant phenotype is only revealed when both genes are mutated. Their sequence similarity to TTG1 could suggest that these very different functions in the plant are the result of changes to the regulation of these WDR genes, rather than functional changes to the proteins they encode.

We show here that local changes in WDR function in Arabidopsis family members can be attributed to mutation of key residues followed by positive selection. Combinatorial mutant analysis reveals the central role of the TTG1 WDR protein family, including TTG1 itself, in circadian clock regulation. These results shed new light on protein functional evolution through small changes and point to a much more significant role than previously suspected for this particular protein family in circadian regulation.

Results

Protein function diverges in the TTG1-like WDR protein clade

LWD1 and LWD2 are the only two WDR proteins in Arabidopsis that are closely related to TTG1, although our phylogenetic analysis suggests that TTG1 and the LWD proteins fall into two clades resulting from a gene duplication event at the base of the seed plant lineage (Fig. 1a, Supplementary Fig. 1). Despite their sequence similarity to TTG1 (Extended Data Fig. 1), LWD1 and LWD2 have been described to have a very different function to TTG1, acting as scaffolds for the transcriptional regulators functioning in the circadian oscillator ${ }^{14}$. We were interested to determine whether this different function of proteins with such high similarity depends on differential regulation. To test this hypothesis, we first investigated whether these two proteins have similar function to TTG1 through a transgenic rescue test by ectopic expression in the $\operatorname{tg} 1-1$ mutant. We found that LWD1 and LWD2 did not rescue pigment absence in the leaves and in the seeds of the Arabidopsis ttg1-1 mutant, nor were these genes capable of rescuing the root hair and trichome phenotypes (Fig. 1b, 1c; Extended Data Fig. 2, 3). We assessed the transcript levels of

LWD1 and LWD2 in these transgenic lines and confirmed that the transgene is expressed (Extended Data Fig. 4).

Combinatorial mutant analysis provides new insights into the function and evolution of the

TTG1 family

The apparent lack of TTG1-like function demonstrates that LWD1/2 and the closely related TTG1 have different protein activities that could have arisen as a result of evolution in LWD1/2 or TTG1 of a new functional role specific to the circadian clock or epidermal cell characteristics (neofunctionalization) or could be the effect of subfunctionalization and division of roles in the TTG1 family. To address this question, it was necessary to investigate whether TTG1 can have LWD1/2-like function in circadian clock regulation. The ttgl-21 mutant has no effect on circadian period (Fig. 2a, 3a); however this does not demonstrate that TTG1 is without function in the circadian oscillator because that role might be masked by the presence of functional LWD1 and LWD2 proteins in ttg1-21 mutant plants. To address the level of functional redundancy between TTG1, LWD1 and LWD2 genes and the possible involvement of TTG1 in circadian clock regulation, we crossed the ttgl-21 Arabidopsis Columbia mutant with the double lwdllwd2 mutant [20]. We performed leaf movement and CCA1:LUC reporter gene assays and measured a severe impairment of the circadian clock in the triple mutant line (Fig. 2a, b). The lwdllwd2ttg 1 triple mutant was arrhythmic in constant light with all replicates having an RAE >0.5 with FFT-NLLS analysis for CCA1:LUC rhythms (Fig. 2b) and 60 of 83 triple mutant plants were arrhythmic for leaf movement (RAE >0.5; Fig. 2a). Consistent with these results, the $l w d l l w d 2 t t g 1$ triple mutant was also very delayed in flower induction (Extended Data Fig. 5a, b). These data demonstrate that the TTG1 protein is necessary for circadian clock function in the absence of LWD1 and LWD2, and when all are absent there is a loss of circadian rhythms comparable to that for loss of the major components of the central oscillator (e.g. prr 5, 7,9 triple mutants ${ }^{15}$). We conclude that TTG1 is capable of regulating circadian activity, therefore circadian function is not newly acquired and unique to the LWD1/LWD2 clade.

We reasoned that the modifications in LWD1 and LWD2 proteins that have restricted their function to the circadian clock might have improved their ability to participate in this process. Therefore, TTG1 would not be expected to be as effective in affecting circadian rhythms as are LWD1 and LWD2. We used single and double mutant combinations to test this hypothesis. We measured circadian function using CCA1:LUC expression in all single and double mutant combinations $\operatorname{ttg} 1$, $l w d 1, l w d 2$, $l w d 1 t t g 1, l w d 2 t t g l$ and $l w d l l w d 2$ (Fig. 3). If TTG1 is functionally equivalent to LWD1 and LWD2 in the circadian clock, the effect we observe in the double mutant $l w d 1 l w d 2$ would be present also in $l w d l t t g 1$ or $\operatorname{lwd} d \operatorname{ttg} 1$ mutants. In the single mutants $\operatorname{ttg} 1$ (period: $23.4 \pm 0.3 \mathrm{~h}, \mathrm{n}=11)$ and $l w d 2(24.1 \pm 0.2 \mathrm{~h}, \mathrm{n}=11)$ we do not observe a strong effect on the period of the central oscillator compared to Col- $0 . l w d l$ was significantly reduced in period compared to Col-0 (Col-0 $25.0 \pm 0.8 \mathrm{~h}$, lwd1 $23.0 \pm 0.6 \mathrm{~h}$; t -value $=7.12, \mathrm{df}=20, \mathrm{p}<0.00001)$ (Fig. 3, Extended Data Fig. 6a) and the lwdllwd2 double mutant had an extremely short circadian period ($17.0 \pm 0.2 \mathrm{~h}, \mathrm{~T}=22.72, \mathrm{df}=14, \mathrm{p}<0.00001$), confirming previous studies ${ }^{12}$. In contrast, double mutants between $\operatorname{ttg} 1$ and $l w d l$ or $l w d 2$ had very little effect on circadian period (Fig. 3, $l w d l \operatorname{tg} 1$ period $24.86 \pm 0.34 \mathrm{~h}, \mathrm{~T}=0.16, \mathrm{df}=21, \mathrm{p}=0.44 ; / w d 2 \operatorname{ttg} 1$ period $24.34 \pm 0.095 \mathrm{~h}, \mathrm{~T}=1.5$, $\mathrm{df}=20, \mathrm{p}=0.08$). In line with the effects on circadian period, only the lwdllwd2 double mutant affected flowering time (Extended Data Fig. 5c). These data show that TTG1 is not as competent to affect circadian activity as are $L W D 1$ and $L W D 2$. The small effect of $l w d l$ was not detected in a lwdlttgl double mutant (Fig. 3 and Extended Data Fig. 6a). This might provide evidence that TTG1 competes with LWD2 to regulate similar promoter sites, and that in the absence of TTG1, LWD2 can complement the effects of $l w d 1$ loss of function. Alternatively, it is possible that changes in the expression of $L W D 2$ in $\operatorname{tg} 1$ loss of function lines might affect circadian period. However, we found no differences in LWD2 expression in Col-0 versus the lwdlttgl mutant (Extended Data Fig. 6b), although we note that unexplored post-transcriptional differences might explain this result.

In addition to the circadian clock phenotype the triple mutants had several consistent morphological defects. Leaf shape was severely altered with increased serration and consistently
shorter leaves. Furthermore, the triple mutants had early signs of senescence localized at the tip of the leaves (Extended Data Fig. 7a, 7b). These defects were not present in any of the double mutant combinations we analysed (Extended Data Fig. 7a). Trichomes on the leaf margins were present in the $\operatorname{tg} 1$ mutant plants but their number was significantly reduced in the triple mutant and there was a small decrease in the number of trichomes present in the double mutants $l w d l t t g l$ and $l w d 2$ ttg 1 (Extended Data Fig.7c, p values in Extended Data Fig. 7d).

TTG1-like WDR protein functional capability is conserved across land plants

To investigate the evolution of the TTG1 WDR proteins we reconstructed the relationships between proteins inferred from sequences derived from a combination of genomes and transcriptomes from extant land plants (Supplementary Fig. 1). Our phylogenetic analyses identified that a gene duplication event had occurred, inferred to have arisen following the divergence of the Monilophytes. The gene duplication gave rise to two major clades, each containing representative proteins derived from gymnosperms and angiosperms, one including the Arabidopsis thaliana TTG1 (and termed the TTG1 clade), and the other including the Arabidopsis thaliana LWD1 and LWD2 genes (and termed the LWD1/2 clade). On the basis of loci from fully sequenced genomes, all gymnosperms and angiosperms are inferred to have at least one gene copy from the TTG1 clade, and at least one gene copy from the $L D W 1 / 2$ clade. Additional deep level duplications are inferred to have occurred within the 'Bryophytes' sensu lato, with three copies of TTG1 WDR proteins present in Marchantia polymorpha. Of these, MpWDR3 and its respective homologs are on a very long branch in comparison to the other two Marchantia sequences (Supplementary Fig. 1).

Focusing on early diverging land plants we isolated the three Marchantia polymorpha TTG1 WDR genes $M p W D R 1, M p W D R 2$ and $M p W D R 3$, and ectopically expressed them (using the CaMV 35S promoter) in the Arabidopsis $\operatorname{ttg} 1-1$ mutant to address the extent of functional conservation between these three proteins (Extended Data Fig. 1). We used ectopic expression of AtTTG1 (from the same promoter) as a positive control for the rescue of the tgl-1 phenotype. Mutant plants
expressing $M p W D R 1$ and plants expressing $M p W D R 2$ are capable of producing pro-anthocyanidin in the seed coat (Fig. 4). We also observed production of anthocyanins in leaves, normally absent in the ttg1-1 mutant (Extended Data Fig. 2). Furthermore, 35S:MpWDR1 and 35S:MpWDR2 can also rescue the absence of trichomes on the leaf blade seen in the ttg1-1 mutant (Fig. 4), and the increased number of trichoblasts (root hairs) found on the root (Extended Data Fig. 3). However, 35S:MpWDR3 expression in the tgl-1 mutant did not rescue any of these defects to the extent of being approximately equal to the wild type (Fig. 4, Extended Data Fig. 2, 3). The MpWDR3 gene sits on a very long branch compared to the other two Marchantia TTG1 genes, as seen in our phylogenetic analysis (Supplementary Fig. 1). Long branches can skew apparent relationships in phylogenetic trees, but they also suggest faster mutation rates and the potential for gain or loss of function relative to $M p W D R 1 / 2$. This faster evolution might explain the loss of the protein characteristics necessary to rescue the ttgl-1 mutant phenotypes. Our data show that the protein characteristics essential for pigment regulation, but also those which allow the Rosid-specific evolution of trichome and atrichoblast regulation, are present in proteins in Marchantia that diverged 450 MYA from the angiosperm lineage.

The capability of TTG1 proteins to regulate the circadian clock is a remnant of an ancient

function

To acquire information about the evolution of the circadian clock function in the TTG1 WDR proteins we used ectopic expression of TTG1 WDR proteins in the triple mutant lwdllwd2ttgl. First, we confirmed that overexpression of LWD1 in the arrhythmic triple mutant restored circadian rhythms of CCA1:LUC (26.3 $\pm 0.6 \mathrm{~h}$, Fig. 5). This shows that, despite a high and constant expression pattern driven by the 35 S promoter, the LWD1 protein is sufficient to restore wild type circadian cycling. This can be explained by the fact that TTG1-WDR proteins act as a scaffold to transcription factors, therefore a high and constant expression is not damaging to circadian clock regulation because the expression profiles of the transcription factors that are part of the complex remain unaltered. This level of protein competence is not present in TTG1: the ectopic expression of TTG1 in lwdllwd2ttgl mutants resulted in a short circadian period similar to
the $l w d l w d 2$ mutant $(20.7 \pm 0.8 \mathrm{~h})$ (Fig. 5). We repeated the experiment with several independent lines (expression of transgene confirmed in Extended Data Fig. 4 and Extended Data Fig. 8). We always obtained comparable results, demonstrating that the short circadian period of the transgenic lines is not due to the level of expression of TTG1. We conclude that the main reason that TTG1 has a reduced ability to rescue circadian clock phenotype defects is that the TTG1 protein is different to the LWD1 protein. In short, the differential abilities of the proteins are attributable to their protein properties, not their expression patterns.

To assess the likelihood that ancestral TTG1 WDR proteins could regulate the circadian oscillator we explored the function of modern Marchantia sequences using transgenic rescue of the lwdllwd2ttg1 triple mutant (Tr) with MpWDR1, MpWDR2 and MpWDR3 driven by the 35S promoter. Unlike TTG1, both MpWDR1 and MpWDR2 could restore near wild type period in $l w d 1 l w d 2 t t g 1$ and were as effective as transgenic rescue with LWD1 (Tr35S:MpWDR1 26.5 ± 0.6 h, Tr35S:MpWDR2: 25.7 ± 0.4, Fig. 6). Furthermore, we also observed rescue of the late flowering time phenotype in all these lines (Extended Data Fig. 9). This result suggests that the circadian clock regulation function of the TTG1 WDR proteins could have been acquired in early diverging land plants. However, once again the more divergent MpWDR3 protein was only partially able to rescue the mutant phenotype (Fig. 6; Extended Data Fig. 9). Despite high levels of expression from the 35S promoter (Extended Data Fig. 8) we did not observe a rescue of the triple mutant flowering time phenotype with this gene or of the circadian phenotype, which remained arrhythmic (Fig. 6, Extended Data Fig. 9).

Subfunctionalization within the TTG1 WDR family is present in the earliest diverging flowering plants

To explore whether the apparent subfunctionalization of the LWD1/LWD2 proteins occurred late in the lineage including Arabidopsis, we analysed LWD protein function from a species that diverged at the base of the flowering plant phylogenetic tree. The AmLWD protein of Amborella trichopoda, the earliest diverging extant angiosperm ${ }^{16}$, is a member of the LWD1 and LWD2
clade (Fig. 1A, Supplementary Fig. 1). Ectopic expression of AmLWD in the ttg $1-1$ mutant and the lwdllwd2ttgl triple mutant revealed that AmLWD did not rescue the epidermal defects of the $\operatorname{ttg} 1-1$ mutant (Extended Data Fig. 10) but did rescue both the flowering time and circadian period defects arising from the loss of LWD1 and LWD2 (Fig. 6; Extended Data Fig. 9). This is equivalent to the result obtained with LWD1 and LWD2. These results show that LWD clade subfuntionalization is not an isolated event that happened in Arabidopsis but was already present in early diverging angiosperms.

Discussion

Unexpected evidence of a central role for the TTG1 WDR protein family in circadian

regulation

Our results demonstrate that the TTG1 protein is capable of regulating the circadian clock and is able to partially rescue the loss of the other two TTG1 WDR proteins (LWD1 and LWD2). The arrhythmic phenotype of the $l w d l l w d 2 t t g l$ triple mutant demonstrated the central role of this protein family in the regulation of the circadian clock. The complete arrhythmia of the triple mutants suggests a central role for TTG1 WDR proteins in the circadian oscillator, and that their importance might have been underestimated, concealed by the presence of the TTG1 protein in the $l w d l l w d 2$ double mutant. The complete loss of rhythms in the triple mutant, together with the strong late flowering phenotype, is comparable to loss-of-function of the PSEUDO RESPONSE REGULATOR (PRR) transcriptional regulators in the central circadian oscillator ${ }^{17}$; prr 5 prr 7 prr 9 mutants are also completely arrhythmic, like $l w d l l w d 2 t t g 1^{15}$. In simple terms, loss of $T T G 1$ function in an already $l w d l l w d 2$ mutant background completely incapacitates the circadian clock. Our data suggest that the TTG1 $W D R$ gene family and the proteins these genes encode are required for rhythm generation. It is not yet clear whether this rhythm generation operates through the known interactions between TTG1-like proteins and transcription factors of the MYB and bHLH families, or whether it occurs through other pathways. Nevertheless, our analysis has shown that the presence of TTG1 in the $l w d 1$ mutant is detrimental for the circadian clock. The $l w d 1 t t g l$ mutant has a wild type period whereas a single $l w d l$ mutant is significantly different from the wild
type. The TTG1 protein is not only less efficient to regulate the circadian clock than LWD1 and LWD2, but its presence could also be detrimental in the absence of LWD1.

An ancient role for TTG1 WDR proteins in circadian regulation

The ability to drive circadian regulation does not seem to be a new function that has been acquired late in land plant evolution. Our transgenic rescue of the triple mutant $l w d l l w d 2 t t g l$ with WDR TTG1 genes from across the land plant phylogenetic tree has shown that not only Arabidopsis proteins but also Marchantia and Amborella proteins possess the ability to restore flowering time in severely late flowering $l w d l l w d 2 t t g l$ plants and to restore circadian rhythms. While the endogenous functions of the TTG1 WDR proteins in Marchantia are not yet known, an increasing body of evidence suggests that early diverging land plants, including the liverworts, have a circadian oscillator ${ }^{18,19,20}$. In Arabidopsis, LWD1 and LWD2 are proposed to act as a coregulator of CCA1 1^{14} and bind the promoters of PRR5, 9 and $l(T O C 1)^{13}$. In Marchantia CCA1 itself appears to be absent, although related genes and the $P R R$ genes are present ${ }^{20}$. This finding might explain the extreme degree of conservation of the TTG1 WDR proteins from across the plant tree of life, because the circadian clock is so essential to organismal fitness ${ }^{21}$.

Functional conservation across $\mathbf{4 5 0}$ million years of evolution

If the circadian role of the TTG1 WDR proteins is an ancestral one, it might be expected that the function of TTG1 in specification of epidermal cell identity and pigment production is driven by protein characteristics or cis regulatory changes that have evolved more recently. However, when we attempted to rescue the $\operatorname{tg} 1$ mutant of Arabidopsis with the TTG1 WDR genes from Marchantia polymorpha we observed full rescue, including the production of pro-anthocyanidin in the seed coat, leaf anthocyanin synthesis, non-root hair cell determination and trichome differentiation. This strong transgenic rescue confirms that the ancestral TTG1 WDR proteins had the capacity to perform all of the combined functions of the Arabidopsis TTG1 and LWD proteins and suggests that subfunctionalization has occurred more recently.

One aspect of this transgenic rescue was particularly unexpected. Previous studies have suggested
that the role of TTG1 in specifying trichome and root hair development evolved very late ${ }^{22,23}$. The MYB members of the MBW involved in trichome development have only been described from Rosid genomes, and where the endogenous function of TTG1 orthologues from outside the Rosid clade has been studied, they have been found to regulate anthocyanin production but not epidermal cell differentiation ${ }^{22}$. It is therefore particularly surprising that two of the three TTG1 WDR proteins from Marchantia are capable of rescuing such newly evolved functions. Our data show that the WDR proteins have not evolved new capabilities in the Rosids, as has been previously hypothesized, but rather that the protein characteristics required for the WDR proteins to scaffold protein complexes that can specify trichomes and non-root hair cells were already present in early diverging land plants 450MYA. The key evolutionary change underpinning the evolution of trichomes and root hair development in Rosids is to be found in another protein in the MBW complex or in the presence of new target genes of the MBW complex.

Subfunctionalization in angiosperms through coding sequence change

Since the early diverging land plant TTG1 WDR proteins can rescue all aspects of the Arabidopsis $\operatorname{ttg} 1$ and $l w d l l w d 2$ mutant phenotypes, but the 35:LWD1 and LWD2 constructs cannot rescue the pigmentation and epidermal patterning defects of the $\operatorname{tgg} l$ mutant, subfunctionalization must have occurred following the divergence of the TTG1 and LWD clades of proteins. This conclusion is supported by the observation that, despite its surprising role in circadian regulation, TTG1 is not as efficient as LWD1 and LWD2 in regulating the circadian clock. The ectopic expression of TTG1 in the $l w d l l w d 2 t t g 1$ triple mutant is able to restore rhythmicity, but only at a shorter period equivalent to that observed in the $l w d l l w d 2$ mutant. Furthermore, our double mutant analyses show that, in all combinations, TTG1 is less effective at regulating CCA1 expression and flowering time compared to LWD1 and LWD2. Since our transgenic rescue experiments all use the same strong promoter (and we confirmed expression in the transgenic lines), we can conclude that this subfunctionalization is a result of changes in the protein coding sequences of the TTG1 WDR genes, not a result of changes in their regulation. This is particularly surprising given the observation that clock gene expression is regulated in a circadian fashion and that constitutive
expression of some oscillator genes can inhibit rhythms. It is not possible to rule out rhythmic post-transcriptional modification of these proteins, which might also influence their function. The importance of the protein differences does not exclude that the expression of these genes has changed after the divergence between $T T G 1$ and $L W D 1 / L W D 2$. Alignment of the genomic region upstream the transcription start codon shows longer blocks of similar sequence between LWD1 and $L W D 2$, although this might be expected because they have recently duplicated (Supplementary Fig. 2).

The two main roles of (i) circadian regulation and (ii) epidermal/anthocyanin specification have been divided between the LWD1/LWD2 clade proteins and the TTG1 clade, respectively. Our phylogenetic reconstruction of the TTG1 WDR protein family indicates that the duplication that gave rise to the TTG1 and LWD clades arose at the base of the seed plants, indicating that the subfunctionalization we observe in Arabidopsis must have occurred after this. We therefore investigated whether the subfunctionalization is ancestral to the angiosperms. The LWD protein from Amborella trichopoda, the monotypic member of the earliest diverging order of extant angiosperms ${ }^{16}$, was able to rescue the circadian deficits arising from loss of LWD1LWD2 function in our Arabidopsis mutants, but could not restore trichomes or seed coat pigmentation in the absence of TTG1. We therefore conclude that the subfunctionalization of these two protein clades, with small protein sequence divergence adapting each to a specific role, had occurred by the time the angiosperms arose, around 150 MYA.

Conclusion

Our data show that very small protein changes, hidden by extreme protein conservation, can be important in the evolution of gene function. We have shown that even when proteins are highly conserved across hundreds of millions of years their functional abilities can take unexpected twists. Detailed functional analysis is important to address how protein changes impact on protein functions, and in this case has revealed an unexpected role as a key circadian oscillator for the TTG1-WDR family of plant proteins.

Materials and Methods

Assembly, Alignment, and Phylogenetic Analysis

Homologs of TTG1 and LWD1/2 were downloaded as an orthogroup from all available fully sequenced genomes on Phytozome version 12. Further homologs of TTG1 and LWD/2 were obtained by blasting 1KP transcriptomes from gymnosperms, monilophytes, and major nonvascular plant lineages, using AtTTG1 and AtLWD1 as a reference sequence. All sequences were trimmed to include complete codons only, and then translated to amino acids. The dataset was aligned by MAFFT version 7.388, and phylogenetically analysed using FastTree version 1.0 with CAT optimization (to account for varying rates of evolution across sites), with the generation of FastTree support values with the Shimodaira-Hasegawa test (SH numbers). Phylogenetic trees were rooted using the Anthocerotophyta sequences as an outgroup, and the resultant polarised topology largely tracks the accepted organismal phylogeny. Analyses were run multiple times to confirm concordant topologies and visualized and annotated in FigTree version 1.4.3.

WDR transgenic plants

The WDR genes were amplified by RT-PCR from cDNA obtained from Marchantia polymorpha, Amborella trichopoda and Arabidopsis thaliana Columbia. A list of primers with restriction sites attached can be found in supplementary table 1 . The restriction sites were used to insert cDNA fragments into a modified version of pGreen II 0029 with a double 35 S promoter and a 35 S terminator inserted using KpnI and $\mathrm{BamHI} / \mathrm{BgIII}$ (sequence in supplementary table 1). For transgenic rescue of Arabidopsis T-DNA insertion mutants that carry Kan resistance, the same 35S promoter/terminator was added to phosphinothricin (BASTA) resistant pGreenII0229 using KpnI and BamHI/BgIII.

Marchantia gene MpWDR1 corresponds to Mapoly0259s0004.1, MpWDR2 to
Mapoly0161s0021.1, MpWDR3 to Mapoly0027s0005.1.
Agrobacterium tumefaciens strain GV3101 was used to transform Arabidopsis. Arabidopsis
transformation was performed using the floral dip method ${ }^{24}$.
Semi quantitative RT-PCR was performed to check the level of transgene expression in the transgenic plants. 5ul of the RT-PCR product was run for varying numbers of cycles as indicated in Extended data Fig. 4 and 8 to ensure that the PCR reaction was not at plateau phase. The list of primers used can be found in supplementary table 1 .

The ttgl-1 mutant in Landsberg erecta accession was used for single mutant transgenic rescue studies.

Triple mutant analysis in Arabidopsis

The $l w d l l w d 2$ (SALK_006874 (lwdl) and SALK_072182 (lwd2)) CCA1:LUC line was kindly provided by Shu-Hising Wu from the Institute of Plant and Microbial Biology, Academia Sinica, Taipei ${ }^{13}$. This double mutant is in the Col background. To obtain a triple mutant we crossed the double to a GABI-Kat T-DNA insertion mutant ttg1-21 GK-580A05 also in Col. All experiments involving the triple mutant $l w d l l w d 2 \mathrm{ttg} 1$ contain this $\operatorname{tg} 1-21$ allele. Genotyping of the segregating population was conducted with PCR using the set of primers in supplementary table 1 . RT-PCR was performed on the mutant and the complete absence of transcripts of TTG1, LWD1 and $L W D 2$ in the mutant was verified.

Anthocyanin quantification

Arabidopsis thaliana plants were grown on liquid $1 / 2$ MS media with 3% sucrose for 14 days. They were subsequently harvested and frozen in liquid nitrogen and ground, acidic methanol extraction was conducted as in ref. ${ }^{25}$ but using 35000 as coefficient for anthocyanins and MW of 647 (Cyanin - cyanidin 3,5 diglucoside) resulting in the subsequent formula Conc $=\mathrm{Abs} / 35000 \mathrm{x}$ dil factor $\mathrm{x} 647 \mathrm{x} 1000 / \mathrm{mg}$ of sample extracted $=$ conc $\mathrm{mg} . \mathrm{g}-1 \mathrm{DW}$ or FW.

Measuring circadian rhythms of CCA1:LUC and leaf movement

Circadian rhythms were measured by imaging the movement of leaves and bioluminescence of a fusion between the CCA1 promoter and the firefly luciferase reporter gene (CCA1:LUC). Plants
were grown and assayed for luciferase activity exactly as described in ref. ${ }^{26}$ using a Photek ICCD25 camera system. Leaf movement was measured as reported in ref. ${ }^{26}$. The data are normalized to the mean luminescence for each trace. Circadian period estimates in constant light were calculated using FFT-NLLS analysis curve fitting tool with the BRASS V3.0 package for MS excel ${ }^{26}$ or in Biodare 2^{27}. A good fit to a cosine curve is described by a relative amplitude error $($ RAE $)$ of 0 , whereas no fit $=1$. In practice RAE >0.5 is indicative of no detectable rhythm ${ }^{26}$. Supplementary table 2 summarises period length and RAE for all CCA1::LUC experiments.

qRT-PCR

qRT-PCR was performed using the LUNA qPCR mastermix from NEB and the CFX384 Bio-rad machine. Three biological replicates were performed from different plant pools grown in the same conditions. Primers used can be found in supplementary table 1. Relative expression was calculated using the delta delta Ct method, correcting for primer efficiency.

Supplementary Table 1 includes all primers used in this article.

Data availability

All data that support the findings of this study are available in the University of Cambridge data repository, with the identifier https://doi.org/10.17863/CAM. 44078

Corresponding authors

Correspondence to Beverley J Glover (bjg26@cam.ac.u) or Alex A.R. Webb (aarw2@cam.ac.uk).

Acknowledgements

We thank Matthew Dorling for excellent lab and greenhouse support and Edwige Moyroud for helpful discussions. Elsa Matthus and Julia Davies provided help with root hair analysis, Matt Stancombe and Xiao Wang provided help with the circadian clock experiments, and Nick Albert and Kevin Davies provided guidance on anthocyanin extraction. We thank Shu-Hising Wu
(Institute of Plant and Microbial Biology, Academia Sinica, Taipei) for providing the $l w d l l w d 2$ CCA1:LUC line. We thank the Cambridge University Botanic Garden for supplying Amborella trichopoda tissue for RT-PCR. Carlos A. Lugo provided support with the statistical analysis and Qi Wang with figure and dot plot presentation. CAA acknowledges support from the Cambridge University Botanic Garden Research Fund. TJH was supported by BBSRC UK grant BB/M006212/1 awarded to AARW.

Author contributions

B.J.G., C.A.A. and A.A.R.W. conceived the project and designed experiments. C.A.A. and T.J.H conducted all experiments. S.F.B conducted all phylogenetic analyses. B.J.G., A.A.R.W. and C.A.A. wrote the manuscript. All authors commented before submission.

Competing Interests

The authors declare no competing interests.

References

1. Jacob, F. Evolution and tinkering. Science 196, 1161-6 (1977).
2. Wray, G. A. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206-216 (2007).
3. Carroll, S. B. Evo-Devo and an Expanding Evolutionary Synthesis: A Genetic Theory of Morphological Evolution. Cell 134, 25-36 (2008).
4. Smith, T. F., Gaitatzes, C., Saxena, K. \& Neer, E. J. The WD repeat: A common architecture for diverse functions. Trends Biochem. Sci. 24, 181-185 (1999).
5. Ramsay, N. a \& Glover, B. J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science 10, 63-70 (2005).
6. Kornneef, M. The complex syndrome of ttg mutants. Arab. inf. 18, 45-51 (1981).
7. Pattanaik, S., Patra, B., Singh, S. K. \& Yuan, L. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Front. Plant Sci. 5,

259 (2014).
8. Schiefelbein, J., Huang, L. \& Zheng, X. Regulation of epidermal cell fate in Arabidopsis roots: the importance of multiple feedback loops. Front. Plant Sci. 5, 47 (2014).
9. Xu, W., Dubos, C. \& Lepiniec, L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci. 20, 176-185 (2015).
10. Pesch, M. et al. TTG1 and GL1 compete for binding to GL3 in Arabidopsis thaliana. Plant Physiol. 168, pp. 00328.2015 (2015).
11. Zhang, B., Chopra, D., Schrader, A. \& Hülskamp, M. Evolutionary comparison of competitive protein-complex formation of MYB, bHLH, and WDR proteins in plants. J. Exp. Bot. 70, 3197-3209 (2019).
12. Wu, J.-F., Wang, Y. \& Wu, S.-H. Two New Clock Proteins, LWD1 and LWD2, Regulate Arabidopsis Photoperiodic Flowering. Plant Physiol. 148, 948-959 (2008).
13. Wang, Y. et al. LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 Form a Positive Feedback Regulatory Loop in the Arabidopsis Circadian Clock. Plant Cell 23, 486-498 (2011).
14. Wu, J.-F. et al. LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. Nat. Comтип. 7, 13181 (2016).
15. Nakamichi, N., Kita, M., Ito, S., Yamashino, T. \& Mizuno, T. PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, Together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol. 46, 686-698 (2005).
16. The Angiosperm Phylogeny Group III. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105121 (2009).
17. McClung, C. R. Wheels within wheels: new transcriptional feedback loops in the Arabidopsis circadian clock. F1000Prime Rep. 6, 2 (2014).
18. Okada, R. et al. Functional characterization of CCA1/LHY homolog genes, PpCCA1a and PpCCA1b, in the moss Physcomitrella patens. Plant J. 60, 551-563 (2009).
19. Holm, K., Källman, T., Gyllenstrand, N., Hedman, H. \& Lagercrantz, U. Does the core
circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop? BMC Plant Biol. 10, (2010).
20. Linde, A.-M. et al. Early evolution of the land plant circadian clock. New Phytol. (2017). doi:10.1111/nph. 14487
21. Dodd, A. N. Plant Circadian Clocks Increase Photosynthesis, Growth, Survival, and Competitive Advantage. Science (80-.). 309, 630-633 (2005).
22. Serna, L. \& Martin, C. Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci. 11, 274-280 (2006).
23. Yang, C. \& Ye, Z. Trichomes as models for studying plant cell differentiation. Cellular and Molecular Life Sciences (2012). doi:10.1007/s00018-012-1147-6
24. Clough, S. J. \& Bent, A. F. Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. Plant J. 16, 735-743 (1998).
25. Albert, N. W. et al. Light-induced vegetative anthocyanin pigmentation in Petunia. J. Exp. Bot. 60, 2191-2202 (2009).
26. Martí Ruiz, M. C. et al. Circadian oscillations of cytosolic free calcium regulate the Arabidopsis circadian clock. Nat. Plants 4, (2018).
27. Zielinsky T, Moore AM, Troup E, Halliday KJ, Millar AJ. Strengths and Limitations of Period Estimation Methods for Circadian Data. PLoS ONE 9(5): e96462. (2014)

Figure Legends

Fig. 1. Evolution of the TTG1 and LWD1/LWD2 clades. a, Simplified phylogenetic tree of the TTG1 WDR proteins (detailed tree available in Supplementary Fig. 1). AthTTG1, AthLWD1, AthLWD2 refer to proteins from Arabidopsis thaliana, AmLWD refers to a protein from the early diverging angiosperm Amborella trichopoda. MpWDR1, MpWDR2, MpWDR3 refer to proteins
from the liverwort Marchantia polymorpha. The black star indicates a gene duplication event at the base of the seed plant lineage. \mathbf{b}, \mathbf{c}, Transgenic rescue of ttg1-1 mutant ectopically expressing different WDR genes. \mathbf{b}, Seed coat pigments are absent in the ttgl-1 mutant and in plants ectopically expressing $L W D 1$ and $L W D 2$. Seed coat pro-anthocyanidins are visible in the ttg 1-1 mutant overexpressing TTG1. c, Picture of the leaf blade, trichomes are absent in the ttg 1-1 mutant and in the plants ectopically expressing $L W D 1$ and $L W D 2$, but present in the tgl-1 mutant overexpressing TTG1. The same phenotypes were observed in multiple independent lines (ttg1 35S:TTG1 = 7, ttg1 35S:LWD1 = 10, ttg1 35S:LWD2 = 12).

Fig. 2. lwd1lwd2ttg1 has arrhythmic CCA1:LUC and leaf movement. a, Mean normalized leaf movement rhythms measured across 6 days in constant light from Col-0 (green, $\mathrm{n}=68$), $l w d l l w d 2$ ttg 1 (pink, $\mathrm{n}=83$), ttg 1 (blue, $\mathrm{n}=66$) and lwdllwd2 (yellow, $\mathrm{n}=59$) seedlings. Mean normalized leaf pixel position measured from 14 day old seedlings shown with SEM. Constant illumination supplied as $70 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ cool white fluorescent light. FFT-NLLS analysis of leaf movement circadian period estimates shown with relative amplitude error (RAE) for rhythmic individuals of Col-0 (green, number rhythmic=46/68), ttg1 (blue, number rhythmic $=41 / 66$), $l w d l l w d 2$ (yellow, number rhythmic $=36 / 59$) and $l w d l l w d 2 t t g l$ (pink, number rhythmic $=23 / 83$). b, Mean normalized CCA1:LUC rhythms measured across 2 12:12 LD (light/dark) cycles and 5 days in constant light from Col-0 (green, $\mathrm{n}=24$) and $l w d l l w d 2 \operatorname{ttg} 1$ ($\mathrm{pink}, \mathrm{n}=24$) seedlings. Mean normalized CCA1:LUC luminescence (counts $800 \mathrm{~s}^{-1}$) measured from 11 day old seedlings grown on 0.5 MS media shown with SEM. Diel and constant light supplied as monochromatic red and blue $70 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ LED illumination. FFT-NLLS analysis of CCA1:LUC circadian period estimates shown with relative amplitude error (RAE) for individual replicates Col-0 (green, number rhythmic $=24$) and $l w d l l w d 2 t t g l($ pink, number rhythmic $=21 / 24)$.

Fig. 3. CCA1:LUC rhythms in WDR family single, double and triple mutant lines. a, Mean normalized CCA1:LUC rhythms measured across LD and four days in constant light from Col-0
(green, $\mathrm{n}=11$), or $l w d l l w d 2 t t g 1$ (pale pink, $\mathrm{n}=5$), $l w d l l w d 2$ (yellow, $\mathrm{n}=5$), $l w d l \mathrm{ttg} 1$ (light orange, $\mathrm{n}=11$), $l w d 2 \operatorname{ttg} l$ (brown, $\mathrm{n}=11$), $\operatorname{ttg} l($ blue, $\mathrm{n}=11$), $l w d l$ (magenta, $\mathrm{n}=11$) and $l w d 2$ (purple, $\mathrm{n}=11$) seedlings. Mean normalized CCA1:LUC luminescence (counts $800 \mathrm{~s}^{-1}$), measured from 11 day old seedlings are plotted with SEM. Diel and constant light supplied as monochromatic red and blue $70 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ LED illumination. b, FFT-NLLS circadian period analysis performed on CCA1:LUC rhythms. Best fitted period length and relative amplitude error (RAE) shown for individual replicates of mean rhythms shown in \mathbf{a}.

Fig. 4. Two of the three Marchantia polymorpha WDR genes rescue the ttg1-1 mutant. a, Seed coat pigments are present in the ttgl-1 mutant lines ectopically expressing MpWDR1 and MpWDR2. Seed coat pro-anthocyanidins are not visible in the ttgl-1 mutant expressing MpWDR3. b, Leaf trichomes are absent in the ttg $1-1$ mutant ectopically expressing $M p W D R 3$ but they are present in plants expressing $M p W D R 1$ and $M p W D R 2$. The same phenotypes were observed in multiple independent lines ttg1 35S:MpWDR1 = 20, ttg1 35S:MpWDR2 = 15, ttg1 $35 S: M p W D R 3=18$.

Fig. 5. TTG1 and LWD1/LWD2 proteins show differential ability to rescue the circadian defect of the lwdlwd2ttg1 triple mutant. a, Mean normalized CCA1:LUC rhythms measured across LD and four days in constant light from Col-0 (green, $\mathrm{n}=12$), $l w d l l w d 2(\mathrm{yellow}, \mathrm{n}=12)$ and lwdllwd2ttgl (pink, $\mathrm{n}=12$), expressing either 35S:TTG1 (TTG1, $\mathrm{n}=12, T T G 1-3 \mathrm{n}=6$, TTG1-4 $\mathrm{n}=6$), 35S:LWD1 $(\mathrm{n}=12)$, 35S:LWD2 $(\mathrm{n}=8)$. Mean normalized CCA1:LUC luminescence (counts $800 \mathrm{~s}^{-1}$), measured from 11 day old seedlings are plotted with SEM. Diel and constant light supplied as monochromatic red and blue $70 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ LED illumination. \mathbf{b}, FFTNLLS circadian period analysis performed on CCA1:LUC rhythms. Best fitted period length and relative amplitude error (RAE) shown for individual replicates of mean rhythms shown in a.

Fig. 6. Different WDR proteins show differential ability to rescue the circadian defect of the $\boldsymbol{l w d l l w d 2 t t g} 1$ triple mutant. a, Mean normalized CCA1:LUC rhythms measured across LD and four days in constant light from triple mutants expressing 35S:MpWDR1 $(\mathrm{n}=12), 35 \mathrm{~S}: M p W D R 2$ $(\mathrm{n}=12), 35 \mathrm{~S}: M p W D R 3(\mathrm{n}=12)$ and $35 \mathrm{~S}: A m L W D(\mathrm{n}=11)$. Mean normalized CCA1:LUC luminescence (counts $800 \mathrm{~s}^{-1}$), measured from 11 day old seedlings are plotted with SEM. Diel and constant light supplied as monochromatic red and blue $70 \mu \mathrm{~mol} \mathrm{~m}-2 \mathrm{~s}^{-1}$ LED illumination. b, FFTNLLS circadian period analysis performed on CCA1:LUC rhythms. Best fitted period length and relative amplitude error (RAE) shown for individual replicates of mean rhythms shown in a.

Extended data Fig. 1.. Alignment of TTG1-WDR proteins. The alignment was performed with the MAFFT algorithm using the cloud-based informatics platform benchling. The colours indicate the degree of amino acid conservation between the six proteins from dark red for the most conserved to blue for the least conserved.

Extended Data Fig. 2. Transgenic rescue of the ttg1-1 phenotype. a,b, Amount of anthocyanin in mg / g of dry weight, bars represent standard deviation of up to three different extractions. Comparison between WT, ttgl-1 mutant and ttg-1-1 mutant ectopically expressing a, TTG1, LWD1, LWD2, MpWDR1, MpWDR2. b, MpWDR3, AmLWD. Graphs show mean values for two biological replicates, each replicate pooled several seedlings.

Extended Data Fig. 3. Transgenic rescue of the ttg1-1 phenotype. a,b,c, Boxplots of root hair count in 2.5 mm of the first 5 mm of the root in the same genotypes used for the anthocyanin assay in Extended Data Fig. 2. Number of plants analyzed in a is $\mathrm{WT}=13, \operatorname{tg} 1=7, \operatorname{ttg} 1$ 35S:TTG1 = 9, ttg1 35S:LWD1 = 8, ttg1 35S:MpWDR1 = 10; in b is WT = 13, ttg $1=10 \operatorname{ttg} 1$ 35S:TTG1 $=11$, ttg1 $35 \mathrm{~S}: \mathrm{LWD} 2=14$, ttg1 $35 \mathrm{~S}: \mathrm{MpWDR} 2=12$; in c is $\mathrm{WT}=9, \operatorname{ttg} 1=6$, $\operatorname{tg} 1$ 35S:AmLWD $=6$, ttg1 35S:MpWDR3 $=6$. Additional details about the statistics can be found in Supplementary table 3. d, Table illustrating p values for pairwise comparisons. p values were
calculated using a non parametric anova using the Kruskal-Wallis test, followed by a post hoc analysis of the means using the Conover test. $\operatorname{ttg} 135 \mathrm{~S}: T T G 1 / W D R 1 / W D R 2$ are all significantly different from the ttg1 mutant. $\operatorname{ttg} 1$ 35S:LWD1/AmLWD are significantly different from the WT and ttg1 35S:WDR3 is significantly different from both, with higher support to be different from the WT. Additional details about the statistics can be found in Supplementary table 3.

Extended Data Fig. 4. Semi quantitative RT-PCR in plants ectopically expressing TTG1

 WDR genes in the $\boldsymbol{t t g} 1-1$ mutant and in the triple mutant $\boldsymbol{l w d} \boldsymbol{l} \boldsymbol{l} \boldsymbol{w d} \boldsymbol{2} \boldsymbol{t t g} \boldsymbol{1}$. The figure shows for each sample 5 ul of the same amplification reaction after 20-25-35 PCR cycles. DNA ladder is 1kb hyperladder (Bioline). a, PCR of WT and ttgl overexpressing lines (35S:TTG1, LWD1, LWD2, MpWDR1, MpWDR2) and reference gene (EUKARYOTIC TRANSLATION INITIATION FACTOR 4Al (EIF4Al)). b, PCR of WT, triple mutant lwdllwd2ttgl and ttgl overexpressing lines (35S:AmLWD, TTG1, LWD1, LWD2, MpWDR1, MpWDR2). Negative control samples indicated with "-". Given the big differences observed, this experiment was performed only once, using multiple lines for most of the transgenic plants.Extended Data Fig. 5. Flowering time phenotype of single and double and triple mutant combinations. a, WT and triple mutant plants grown in the same tray in long day conditions show a dramatically different flowering time. \mathbf{b}, \mathbf{c}, The graphs represent the mean number of rosette and cauline leaves at bolting in different mutant combinations, error bars represent standard deviation. Number of plants in b is $\mathrm{WT}=57$, $l w d l l w d 2 \operatorname{ttg} 1=47$ in c is $\mathrm{WT}=22$, $\operatorname{lwd1\operatorname {tg}1=23,lwdllwd2=}$ $16, \operatorname{lwd2ttg} 1=17, \operatorname{ttg} 1=14$.

Extended Data Fig. 6. Comparisons of lwdl mutant with lwdlttgl double mutant. a, CCAl:LUC luminescence measured from Col-0, lwdl, ttgl and lwdlttgl seedlings. Seedlings were entrained in 12:12 light dark cycle and transferred to camera chamber on day 9. Luminescence was measured for one 12:12 light dark cycle and 96 hours in constant light. Mean
luminescence shown with SEM for $\mathrm{n}=7$, except $\operatorname{ttg} 1$ where $\mathrm{n}=3$. FFT-NLLS was used to estimate period values implemented using Biodare 2 . Student's t test was used to identify whether genotypes were significantly different for period values with $\mathrm{RAE}<0.5$. * denotes $\mathrm{p}<0.05$. Details about the statistical analysis can be found in Supplementary table 3. b, Expression analysis of LWD2 in ttgllwdl mutant. The graph shows mean relative expression of LWD2 in the ttgllwdl double mutant compared to WT in three biological replicas, data obtained by qRT-PCR with LWD2 specific primers and reference gene UBQ10. Error bars represent standard deviation on three biological replicas.

Extended Data Fig. 7 lwdllwd2ttg1 triple mutant phenotype. a, Rosettes of Arabidopsis plants with mutant combinations of different TTG1 WDR genes. Plants were germinated at the same time and grown in the same LD conditions. In the triple mutant $l w d l l w d 2 t t g l$ leaf morphology is perturbed, whereas single and double mutant combinations have wild type leaf morphologies. These lines were grown repeatedly with no variations on these observations. b, Leaf margins of $\operatorname{ttg} 1$ mutant, $l w d l t t g 1$ double mutant and the triple mutant $l w d l l l w d 2 t t g 1$. These differences were observed in a minimum of 6 plants in each of at least three independent batches. c, Boxplot of trichome numbers on the leaf edge of the $\operatorname{tg} 1$ mutant, double mutants and the triple mutant. Data represent total trichome number on a plant with 9 leaves (number of plants counted $\operatorname{lwd} 1 / w d 2 \mathrm{ttg} 1$ 17, $\operatorname{ttg} 118, \operatorname{ttg} l l w d 113, \operatorname{ttg} l l w d 211)$. d, Table illustrating p values for pairwise leaf trichome number comparisons. p values were calculated using a non parametric anova using the KruskalWallis test, followed by a post hoc analysis of the means using the Conover test. Additional details about the statistics can be found in Supplementary table 3.

Extended Data Fig. 8. Semi quantitative RT-PCR in plants ectopically expressing TTG1 WDR genes in the triple mutant $\boldsymbol{l} \boldsymbol{w} \boldsymbol{d} \boldsymbol{1 l} \boldsymbol{w} \boldsymbol{d} \boldsymbol{2} \boldsymbol{t t g} \boldsymbol{1}$. DNA ladder is 1 kb hyperladder (Bioline). The figure shows for each sample 5 ul of the same amplification reaction after 20-25-35 or 22-27-35 PCR cycles. a, PCR with gene specific primers for TTGI and reference gene (EUKARYOTIC

TRANSLATION INITIATION FACTOR 4Al (EIF4A1)) on cDNA of triple mutant lwdllwd2ttg1 plants overexpressing $T T G 1$ in the triple mutant $l w d l l w d 2 t t g l . \mathbf{b}, \mathrm{PCR}$ with gene specific primers for $M p W D R 3$ and housekeeping gene on $\operatorname{ttg} 1$ and triple mutant $l w d l l w d 2 t t g 1$ plants expressing Marchantia polymorpha gene MpWDR3. Data for $M p W D R 2$ are included for comparison to a gene expression level that was capable of transgenic rescue. Negative control samples indicated with "-". The figure show all lines analyzed in semi quantitative RT-PCR.

Extended Data Fig. 9. Flowering time of WT, triple mutant and triple mutant plants overexpressing TTG1-like WDR proteins. a, Plants in each panel were sown at the same time and grown alongside each other in long day conditions. WT, triple mutant plants $l w d l l w d 2 t t g l$, triple mutant overexpressing LWD1, TTG1, MpWDR1, MpWDR2, MpWDR3 and AmLWD. All plant we have analyzed (WT 66, lwdllwd2 41, triple 48, triple 35S:AmLWD1 26, triple 35S:LWD1 39, triple 35S:MpWDR1 23, triple 35S:MpWDR2 30, triple 35S:MpWDR3 54, triple 35S:TTG1 66) show the same pattern, with small variations that are reported quantitatively in b. b, Mean number of rosette and cauline leaves at bolting (error bars indicate standard deviation) and relative p values obtained using Post hoc pairwise test for multiple comparisons of mean rank sums (Dunn's test) used after Kruskal-Wallis one-way analysis of variance by ranks to do pairwise comparisons. Triple 35S:LWD1 and triple 35S:MpWDR1 have the same flowering time as wild type; triple 35S:TTG1, triple 35S:WDR2 and triple 35S:AmLWD flower slightly earlier than the wild type and triple 35S:MpWDR3 flowers later than the WT. 35S:MpWDR3 flowers at the same time as the triple mutant (p value 1). $l w d l l w d 2$ flowering time is significantly different from the wild type and most of the transgenics but the p value is higher when we compare $l w d l l w d 2$ to triple $35 \mathrm{~S}: T T G 1$ and triple 35S:AmLWD (p value respectively $0.09,0.1$).

Number of plants in the analysis: WT 66, lwdllwd2 41, triple 48, triple 35S:AmLWD1 26, triple 35S:LWD1 39, triple 35S:MpWDR1 23, triple 35S:MpWDR2 30, triple 35S:MpWDR3 54, triple 35S:TTG1 66. Additional details about the statistics can be found in Supplementary table 3.

Extended Data Fig. 10. Transgenic rescue of ttg1-1 mutant with 35S:AmLWD. AmLWD is not able to rescue the seedcoat and trichome phenotypes of the ttgl-1 mutant. 6 of 6 independent transgenic lines all showed the same phenotype.

Supplementary Fig. 1. Phylogenetic tree of TTG1 WDR proteins from across the plant kingdom. Green $=$ angiosperms, brown $=$ gymnosperms, orange $=$ monilophyta, purple $=$ lycophyta, red $=$ marchantiophyta, turquoise $=$ bryophyta, black $=$ anthocerotophyta. Functionally characterised genes are highlighted in red.

Supplementary Fig. 2. Pairwise alignments of the genomic region upstream of the start codon of the Arabidopsis thaliana genes LWD1, LWD2 and TTG1.
a

ttg1 35S:TTG1

tg1 35S:LWD1	
0000	
000	
0	1 mm

Fig. 3
684

b

b

a

d P values

	ttg1 35S:LWD1	ttg1 35S:TTG1	ttg1 35S:WRD1	ttg1	
WT	$1.15 \mathrm{E}-04$	$9.10 \mathrm{E}-01$	$2.03 \mathrm{E}-01$	$2.00 \mathrm{E}-05$	
	ttg1 35S:LWD1	ttg1 35S:TTG1	ttg1 35S:WRD1	WT	
ttg1	$9.10 \mathrm{E}-01$			$8.15 \mathrm{E}-04$	$4.36 \mathrm{E}-03$

	ttg1 35S:LWD2	ttg1 35S:TTG1	ttg1 35S:WRDD	ttg1
WT	$2.08 \mathrm{E}-10$	$4.94 \mathrm{E}-01$	$2.91 \mathrm{E}-01$	$5.52 \mathrm{E}-09$
	ttg1 35S:LWD2	ttg1 35S:TTG1	ttg1 35S:WRD2	WT
ttg1	$8.35 \mathrm{E}-01$		$6.91 \mathrm{E}-07$	$3.15 \mathrm{E}-11$

	ttg1 35S:AmLWD	ttg1 35S:WDR3	ttg1	
WT	$5.13 \mathrm{E}-07$	$8.66 \mathrm{E}-04$	$1.34 \mathrm{E}-07$	
	ttg1 35S:AmLWD	ttg1 35S:WDR3	WT	
ttg1	$5.23 \mathrm{E}-01$	$4.73 \mathrm{E}-03$		$1.34 \mathrm{E}-07$

b

c

Extended Data Fig. 6

b

712

c

d

	triple	ttg1	Iwd1 ttg1
ttg1	$2.17 \mathrm{E}-10$		
IWd1 ttg1	$1.26 \mathrm{E}-04$	$1.03 \mathrm{E}-02$	
IWd2 ttg1	$6.69 \mathrm{E}-05$	$3.56 \mathrm{E}-02$	0.663969

EIF4A1

EIF4A1

Extended Data Fig. 9

b

| | WT | \|wd1 |wd2 | triple | triple 35S:AmLWD | triple 35S:LWD1 | triple 35S:MpWDR1 | triple 35S:MpWDR2 | triple 35S:MpWDR3 | triple 35S:TTG1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WT | | 5.20E-15 | $1.60 \mathrm{E}-07$ | $2.24 \mathrm{E}-04$ | 1.27E-01 | $1.00 \mathrm{E}+00$ | $1.28 \mathrm{E}-02$ | $2.56 \mathrm{E}-05$ | $4.48 \mathrm{E}-09$ |
| Iwd1 \|wd2 | 5.20E-15 | | 2.25E-36 | $1.27 \mathrm{E}-01$ | $7.64 \mathrm{E}-06$ | $8.66 \mathrm{E}-09$ | $2.63 \mathrm{E}-03$ | 9.45E-33 | $9.39 \mathrm{E}-02$ |
| triple | 1.60E-07 | 2.25E-36 | | 1.28E-16 | $3.46 \mathrm{E}-12$ | $2.39 \mathrm{E}-04$ | 1.13E-13 | $1.00 \mathrm{E}+00$ | 8.26E-30 |
| triple 35S:AmLWD1 | 2.24E-04 | 1.27E-01 | 1.28E-16 | | $3.35 \mathrm{E}-01$ | $6.37 \mathrm{E}-03$ | $1.00 \mathrm{E}+00$ | $4.39 \mathrm{E}-14$ | $1.00 \mathrm{E}+00$ |
| triple 35S:LWD1 | $1.27 \mathrm{E}-01$ | $7.64 \mathrm{E}-06$ | $3.46 \mathrm{E}-12$ | $3.35 \mathrm{E}-01$ | | $4.23 \mathrm{E}-01$ | $1.00 \mathrm{E}+00$ | $9.78 \mathrm{E}-10$ | $3.23 \mathrm{E}-02$ |
| triple 35S:MpWDR1 | $1.00 \mathrm{E}+00$ | $8.66 \mathrm{E}-09$ | 2.39E-04 | $6.37 \mathrm{E}-03$ | $4.23 \mathrm{E}-01$ | | $9.85 \mathrm{E}-02$ | 5.11E-03 | $1.01 \mathrm{E}-04$ |
| triple 35S:MpWDR2 | 1.28E-02 | $2.63 \mathrm{E}-03$ | 1.13E-13 | $1.00 \mathrm{E}+00$ | $1.00 \mathrm{E}+00$ | $9.85 \mathrm{E}-02$ | | $2.99 \mathrm{E}-11$ | $5.06 \mathrm{E}-01$ |
| triple 35S:MpWDR3 | 2.56E-05 | $9.45 \mathrm{E}-33$ | $1.00 \mathrm{E}+00$ | $4.39 \mathrm{E}-14$ | $9.78 \mathrm{E}-10$ | $5.11 \mathrm{E}-03$ | $2.99 \mathrm{E}-11$ | | 3.67E-26 |
| triple 35S:TTG1 | $4.48 \mathrm{E}-09$ | $9.39 \mathrm{E}-02$ | 8.26E-30 | $1.00 \mathrm{E}+00$ | $3.23 \mathrm{E}-02$ | 1.01E-04 | $5.06 \mathrm{E}-01$ | 3.67E-26 | |

Supplementary fig. 1

		20 1		40 1		60 1	
LWD2	cgaactaaac	cgaagtttgg	ctgatttggt	tcggattcgg	tttattgtgt	agcaagagga	60
LWD1				-------		-------	-
		80 1		100		120 1	
LWD2	agcataacca	gattgattcg	actaggaacc	actaaaccaa	acgaaataca	gaaatttcga	120
LWD1	-------	- - - - attt	tccgagaaaa	tcattggtga	agaagagacg	gagata acga	44
		140		160		$\begin{array}{r}180 \\ \hline\end{array}$	
LWD2	accabaccgg	atcgattcta	cgtgtattaa	acgtcgtcgt	ttttgttagc	taa a alagang	180
LWD1	tgttagccat	gtt-actctg	ttttccttaa	acggtgtcgt	tttcgtcaat	tattaaaata	103
		${ }^{200}$		${ }_{2}^{220}$		$\begin{array}{r} 240 \\ 1 \end{array}$	
LWD2	aaatag- -	- - - ta	abtatccatt	agaaga ${ }_{\text {aga }}$	gacgaagcag	aggaa $\cdot \cdots$ - t	224
LWD1	aactggatga	ctggaatatc	cattigcttt	tgagcgagt	a tagaagcgg	aggcgattt	163
		$\begin{gathered} 260 \\ 1 \\ \hline \end{gathered}$	TR	NSCRIPTION START			
LWD2	ctagggttta	tgct- - acat	tgaagcaab	ATG 255			
LWD1	ctagggtt t	tgctcggaat	cgat t t cacg	ATG 196			

Primer name	Description	Sequence
AC1	cloning AtTTG1 for + Pstl	GGGGCTGCAGATGGATAATTCAGCTCCAGATTCG
AC2	cloning AtTTG1 rev + EcoRI	GGGGGAATTCTCAAACTCTAAGGAGCTGC
AC3	cloning MpWDR2 for + HindllI	GGGGAAGCTTATGGACGGGTTCTCACAAGAACC
AC4	cloning MpWDR2 rev + EcoRI	GGGGGAATTCTCACACTCGTAGAATTTGGAG
AC5	cloning MpWDR1 for + PstI	GGGGCTGCAGATGGCGAGCGAGAAGAAGGATG
AC6	cloning MpWDR1 rev + PstI	GGGGGAATTCTCACACCCTGAGAATCTGCAAC
AC7	cloning AtLWD1 for + Pstl	GGGGCTGCAGATGGGAACGAGCAGCGATC
AC8	cloning AtLWD1 rev + EcoRI	GGGGGAATTCTCAAACCCTGAGAATTTGCAG
AC9	cloning AtLWD2 for + HindIII	GGGGAAGCTTATGGTTACGAGCAGCGATC
AC10	cloning AtLWD2 rev + EcoRI	GGGGGAATTCTCAGACCCGGAGAATCTGC
AC123	cloning MpWDR3 for + BamHI	GGGGGATCCATGTCGAACCGAAATAGAACC
AC124	cloning MpWDR3 Rev + Smal	GGGCCCGGGTCATATTCTTAAAAGCTGCAGCTC
AC97	cloning AmLWD for + Pstl	GGGGCTGCAGATGGCCAATGACCAGAGCC
AC98	cloning AmLWD rev + EcoRI	GGGGGAATTCTTAGACCCTCAAAATCTGAAGC
AC29	LWD1 genotyping forward	GTTCCGATGAGCAGCAGAAGC
AC30	LWD1 genotyping reverse	GCTCAATCTCAGCACCAGCAG
AC31	LWD2 genotyping for	CAAAATGGTTCTGAAGAGCAATC
AC32	LWD2 genotyping rev	TACTAGAAGTACCAATTCGTCTAG
AC33	ttg21 genotyping for	CAGCACCACACATTTCCATG
AC34	ttg21 genotyping rev	AGTCTCAACAACAGACTTCTC
AC35	GABI KAT 8409 LB	ATATTGACCATCATACTCATTGC
EIF4A1F	EIF4A1F	TCTTGGTGAAGCGTGATGAG
EIF4A1R	EIF4A1R	GCTGAGTTGGGAGATCGAAG
AC286	LWD2 qPCR for	TCTTCCCATATCTGCTCCGCTG
AC287	LWD2 qPCR rev	TCAACCTCAGCGCCGGCTG
AC288	UBQ10 qPCR for	GGCCTTGTATAATCCCTGATGAATAAG
AC289	UBQ10 qPCR rev	GAAAGAGATAACAGGAACGGAAACATAG

>2X35S promoter + multiple cloning site +35 S terminator
GGTACCCCTACTCCAAAAATGTCAAAGATACAGTCTCAGAAGACCAAAGGGCTATTGAGACTTTTCA ACAAAGGGTAATTTCGGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTCATCGAAAGG ACAGTAGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCTATCATTCAA GATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGA AGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGACATCTCCACTGACGTAAGGGATGA CGCACAATCCCACCCCTACTCCAAAAATGTCAAAGATACAGTCTCAGAAGACCAAAGGGCTATTGA GACTTTTCAACAAAGGGTAATTTCGGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTC ATCGAAAGGACAGTAGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCT ATCATTCAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTG GAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGACATCTCCACTGACGTAA GGGATGACGCACAATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTT GGAGAGGACAGCCCAAGCTTGGCTGCAGGTCGACGGATCCCCGGGAATTCGGTACGCTGAAATCA CCAGTCTCTCTCTACAAATCTATCTCTCTCTATTTTCTCCATAAATAATGTGTGAGTAGTTTCCCGATA AGGGAAATTAGGGTTCTTATAGGGTTTCGCTCATGTGTTGAGCATATAAGAAACCCTTAGTATGTAT TTGTATTTGTAAAATACTTCTATCAATAAAATTTCTAATTCCTAAAACCAAAATCCAGTACTAAAATCC AGATCC

Supplementary Table 1. List of primers used in this study and sequence of the
2X35S promoter cassette used for the overexpression analyses.

Genotype containing CCA1:LUC	$n=$	Number of plants for which FFT-NLLS provided an estimate of the period (Number of plants with RAE < 0.5)	Mean period length (\pm SEM)	Mean RAE (\pm SEM)
Data in figure 2				
Col-0	24	24 (24)	$26.4 \pm 0.2 \mathrm{~h}$	0.14 ± 0.01
Iwd1 Iwd2 ttg1	24	21 (0)	$19.5 \pm 1.0 \mathrm{~h}$	0.65 ± 0.03
Data in figure 3				
Col-0	11	11 (11)	$25.0 \pm 0.8 \mathrm{~h}$	0.35 ± 0.03
Iwd1	11	11 (11)	$23.0 \pm 0.6 \mathrm{~h}$	0.25 ± 0.03
lwd2	11	11 (11)	$24.1 \pm 0.2 \mathrm{~h}$	0.25 ± 0.03
ttg1	11	11 (11)	$23.4 \pm 0.3 \mathrm{~h}$	0.20 ± 0.02
Iwd1 Iwd2	5	5 (5)	$17.0 \pm 0.2 \mathrm{~h}$	0.38 ± 0.09
Iwd1 ttg1	12	12 (12)	$24.9 \pm 0.3 \mathrm{~h}$	0.25 ± 0.03
Iwd2 ttg1	11	11 (11)	$24.3 \pm 0.1 \mathrm{~h}$	0.24 ± 0.03
Iwd1 Iwd2 ttg1	5	5(0)	$20.4 \pm 2.0 \mathrm{~h}$	0.85 ± 0.05
Data in figure 5				
Col-0	12	12 (12)	$26.2 \pm 0.3 \mathrm{~h}$	0.23 ± 0.01
Iwd1 Iwd2 ttg1	12	11 (0)	$27.2 \pm 0.6 \mathrm{~h}$	0.72 ± 0.03
Iwd1 Iwd2	12	12 (10)	$18.4 \pm 0.9 \mathrm{~h}$	0.36 ± 0.05
Iwd1 Iwd2 ttg1 35S::LWD1	12	12 (12)	$26.3 \pm 0.6 \mathrm{~h}$	0.24 ± 0.02
Iwd1 Iwd2 ttg1 35S::TTG1	12	12 (12)	$20.7 \pm 0.8 \mathrm{~h}$	0.28 ± 0.02
Iwd1 Iwd2 ttg1 35S::TTG1-3	5	5(5)	$16.6 \pm 0.2 \mathrm{~h}$	0.26 ± 0.03
Iwd1 Iwd2 ttg1 35S::TTG1-4	6	6 (4)	$15.8 \pm 0.1 \mathrm{~h}$	0.44 ± 0.07
Data in figure 6				
Col-0	7	7 (7)	$24.8 \pm 0.2 \mathrm{~h}$	0.17 ± 0.01
Iwd1 Iwd2 ttg1	4	3 (0)	$16.4 \pm 0.6 \mathrm{~h}$	0.68 ± 0.07
Iwd1 Iwd2	8	8 (8)	$16.9 \pm 0.2 \mathrm{~h}$	0.23 ± 0.02
Iwd1 Iwd2 ttg1 35S::MpWDR1	12	12 (12)	$26.5 \pm 0.6 \mathrm{~h}$	0.18 ± 0.01
Iwd1 Iwd2 ttg1 35S::MpWDR2	12	12 (12)	$25.7 \pm 0.4 \mathrm{~h}$	0.20 ± 0.02
Iwd1 Iwd2 ttg1 35S::MpWDR3	3	3 (1)	$15.6 \pm 0.1 \mathrm{~h}$	0.51 ± 0.14
Iwd1 Iwd2 ttg1 35S:: AmLWD	11	11 (11)	$24.4 \pm 0.9 \mathrm{~h}$	0.35 ± 0.02
Data in extended data 6				
Col-0	7	7 (7)	$25.3 \pm 0.7 \mathrm{~h}$	0.07 ± 0.01
Iwd1	7	7 (7)	$23.3 \pm 0.8 \mathrm{~h}$	0.07 ± 0.01
Iwd1 ttg1	7	7 (7)	$25.6 \pm 0.6 \mathrm{~h}$	0.09 ± 0.00
ttg1	3	3 (3)	$25.8 \pm 1.2 \mathrm{~h}$	0.06 ± 0.02

Supplementary Table 2. Summary of period and RAE data from circadian clock experiments. Period values and statistics from FFT-NLLS analysis.

Extended data figure 3
a:

genotype		
WT	12.0	63.8333
ttg1	7.0	96.8571
ttg1 35S: LWD 1	8.0	89.3750
ttg1 35S::TTG1	9.0	68.11111
ttg1 35S: WDR1	10.0	72.7000

Kruskal-Wallis chi-squared $(H)=25.385, ~ d f=4, p-v a l u e=4.21 e-05$

epsilon.squared 0.81	lower.ci		upper.ci		
		0.748	0.964		
Freeman.theta					
0.697					
gts	n	Median C	Conf.level	Percentile.lower	Percentile.upper
1 ttg1	7	94.0	0.95	89	108.0
2 ttg1 35S: LLWD1	8	90.0	0.95	79	96.0
3 ttg1 35S: TTTG1	9	67.0	0.95	58	77.0
4 ttg1 35S: WDR1	10	64.0	0.95	60	78.0
5 WT	12	63.5	0.95	58	65.5

\#
b:

genotypes	count	mean	std	\min	25%	50%	75%	\max
WT	13.0	72.461538	7.042909	52.0	71.00	73.0	77.00	80.0
ttg1	10.0	92.900000	9.960477	80.0	83.50	96.5	99.50	105.0
ttg1 35S: : LWD2	14.0	94.000000	7.379806	80.0	89.00	95.5	98.75	106.0
ttg1 35S: : TTG1	11.0	74.818182	5.844967	60.0	73.00	76.0	78.00	82.0
ttg1 35S: :WDR2	12.0	68.416667	6.748176	59.0	62.75	67.5	75.00	78.0

Kruskal-Wallis rank sum test
Kruskal-Wallis chi-squared $=43.892$, $\mathrm{df}=4$, p -value $=6.756 \mathrm{e}-09$
epsilon.squared lower.ci upper.ci
0.7760 .6690 .94

Freeman.theta
0.674
gts n Median Conf.level Percentile.lower Percentile.upper

\#
C:

genotype	count mean	std	min	25%	50%	75%	\max	
WT	9.0	68.777778	6.320162	59.0	65.00	68.0	72.0	78.0
ttg1	6.0	97.500000	7.867655	86.0	95.25	96.5	100.0	110.0
ttg1 35S: : AmLWD	6.0	96.166667	9.948199	80.0	93.25	95.5	103.0	108.0
ttg1 35S: : WDR3	6.0	84.666667	3.076795	80.0	83.25	85.0	86.0	89.0

Kruskal-Wallis chi-squared $=20.746, \mathrm{df}=3, \mathrm{p}$-value $=0.0001189$

```
epsilon.squared lower.ci upper.ci
0.913 0.808 1
```

Freeman.theta
0.737

		gts	n	ian	vel	ower	Percentile.upper
1		ttg1	6	96.5	0.95	90.5	106.0
2	ttg1	35S: : AmLWD	6	95.5	0.95	86.5	106.0
3	ttg1	35S: :WDR3	6	85.0	0.95	81.5	87.5
4		WT	9	68.0	0.95	65.0	78.0

Extended data figure 6

$n=$	min	q1	med	$q 3$	max	mean	stdev	$n=$
Col-	22.99	23.56	26	26.555	28.08	25.33	1.95	7
lwd1	21.3	22.275	22.81	23.61	27.33	23.32	2	7
lwd1ttg1	22.89	24.775	26.47	26.685	26.86	25.59	1.58	7
ttg1	24.19	24.695	25.2	26.62	28.04	25.81	2	3

$\mathrm{T}=3.01798 \mathrm{P}=0.01169 \mathrm{df}=12$
The t-test was two sided

Extended data figure 7

	count	mean	std	min	25%	50%	75%	\max
genotype								
triple	17.0	3.411765	2.938087	0.0	1.0	3.0	4.0	11.0
ttg1	18.0	23.388889	11.985967	2.0	14.0	25.5	29.5	44.0
ttg1lwd1	13.0	10.461538	3.619746	4.0	8.0	12.0	12.0	16.0
ttg1lwd2	11.0	12.181818	5.862051	3.0	7.5	12.0	15.0	23.0

Kruskal-Wallis rank sum test
chi-squared $(H-t e s t)=32.374, d f=3, p-v a l u e=4.364 e-07$
Effects size (epsilon square 95\% confidence)
epsilon.squared lower.ci upper.ci 0.7220 .6320 .944

Extended data figure 9

genotype	count	mean	std	min	25%	50%	75%	\max
WT	66.0	21.136364	3.678990	15.0	18.0	21.0	24.00	30.0
lwd1 lwd2	41.0	13.317073	1.808854	9.0	12.0	13.0	15.00	17.0
triple	48.0	35.104167	6.264522	25.0	30.0	33.0	41.25	46.0
triple 35S: : AmLWD1	26.0	16.269231	3.040496	13.0	15.0	16.0	16.75	29.0
triple 35S: : LWD1	39.0	18.076923	2.689009	14.0	16.0	17.0	19.00	25.0
triple 35S: :MpWDR1	23.0	20.826087	3.242504	14.0	19.0	21.0	23.00	28.0
triple 35S: :MpWDR2	30.0	16.866667	1.736690	14.0	16.0	17.0	17.75	22.0
triple 35S: :MpWDR3	54.0	30.425926	3.688850	22.0	28.0	30.5	32.00	39.0
triple 35S: :TTG1	66.0	15.515152	1.666340	11.0	14.0	16.0	17.00	18.0

Kruskal-Wallis chi-squared $=315.32$, $\mathrm{df}=8, \mathrm{p}$-value $<2.2 \mathrm{e}-16$
epsilon.squared lower.ci upper.ci
$0.294 \quad 0.258 \quad 0.42$
Freeman.theta
0.377
gts n Median Conf.level Percentile.lower Percentile.upper
$1 \begin{array}{llllll}1 & \text { lwd1 lwd2 } 41 & 13.0 & 0.95 & 13.0 & 14.0\end{array}$
$\begin{array}{llllll}2 & \text { triple } 48 & 33.0 & 0.95 & 31.0 & 37.5\end{array}$
$\begin{array}{lllll}\text { triple 35S:AmLWD1 } 26 & 16.0 & 0.95 & 15.0 & 16.0\end{array}$
$\begin{array}{lllll}\text { triple 35S: LWD1 } 39 & 17.0 & 0.95 & 17.0 & 19.0\end{array}$
5 triple 35S::MpWDR1 23 21.0 $0.95 \quad 19.0 \quad 22.0$
$\begin{array}{llllll}\text { triple 35S: MpWDR2 } 30 & 17.0 & 0.95 & 16.0 & 17.0\end{array}$
7 triple 35S: :MpWDR3 $54 \quad 30.5 \quad 0.95 \quad 31.5$
8 triple 35S::TTG1 66 16.0 $0.95 \quad 16.0$

9	WT	66	21.0	0.95	19.0

Additional details:

In Extended data figure 3, 7. The Kruskal-Wallis sum rank were used to test the null hypothesis that the population median of all of the groups are equal. This is a one way non-parametric version of ANOVA. The test works on 2 or more independent samples, which may have different sizes. Note that rejecting the null hypothesis does not indicate which of the groups differs. Post-hoc comparisons between groups are required to determine which groups are different. Dunn's test was employed as the post-hoc pairwise analysis except in 3 and 7 where the Conover test was used. The inflation ratio for the p values used in both cases was the Holm step-down method.

Supplementary Table 3. Details of statistical analysis conducted in Extended Data Figures 3,
6, 7 and 9 .

