7 research outputs found

    Three dimensional evaluation of soft tissue after orthognathic surgery

    No full text
    Abstract Background To evaluate the nasolabial soft tissue change three-dimensionally after orthognathic surgery, using a structured light scanner. Methods Thirty-two malocclusion patients, who underwent orthognathic surgery, were evaluated. CBCT and 3D facial scans were obtained before surgery and 3 months after surgery. The 3D changes in the 26 landmarks, and the relative ratio of the soft tissue movement to the bony movement, were evaluated. Results In the Le Fort I advancement patients, the nasal tip moved 17% forward, compared to the maxillary bony movement, but the nasal prominence decreased 15%. The alar width increased 4 mm after the advancement, and the width decreased 4.7 mm after Le Fort I setback. The relative ratio of the soft tissue movement to the bony movement after bilateral sagittal split osteotomy was about 66% at the Li point in the anteroposterior direction, and it was 21% in the Le Fort I advancement and 14% in Le Fort I setback at the Ls point. Conclusion Alar cinch suturing may not be sufficient to overcome the effect of the maxilla advancement compressing the nasal complex. Alar width widening was prevented in Le Fort I setback. However, it is uncertain that the alar cinch suturing was solely responsible. The soft tissue around the mandible tends to accompany the bony movement more than the maxillary area. In addition, structured light scanning system proved to be a useful tool to evaluate the nasolabial soft tissue

    Excitation energy transfer in organic materials: From fundamentals to optoelectronic devices

    No full text
    In this review, we discuss investigations of electronic excitation energy transfer in conjugated organic materials at the bulk and single molecule level and applications of energy transfer in fluorescent and phosphorescent organic light emitting devices. A brief overview of common descriptions of energy transfer mechanisms is given followed by a discussion of some basic photophysics of conjugated materials including the generation of excited states and their subsequent decay through various channels. In particular, various examples of bimolecular excited state annihilation processes are presented. Energy transfer studies at the single molecule level provide a new tool to study electronic couplings in simple donor/acceptor dyads and conjugated polymers. Finally, energy transfer in organic electronic devices is discussed with particular emphasis on triplet emitter doped OLEDs and blends for white light emission

    Excitation Energy Transfer in Organic Materials: From Fundamentals to Optoelectronic Devices

    No full text
    corecore