213 research outputs found

    Variscan post-collisional cooling and uplift of the Tatra Mountains crystalline block constrained by integrated zircon, apatite and titanite LA-(MC)-ICP-MS U-Pb dating and rare earth element analyses

    Get PDF
    LA-ICP-MS U-Pb dating of apatite, titanite and zircon from the metamorphic cover of the Western Tatra granite was undertaken to constrain the timing of metamorphic events related to the final stages of Variscan orogenesis and subsequent post-orogenic exhumation. Zircon was found only in one sample from the northern metamorphic envelope. U-Pb ages from the outermost rims of zircons define a concordia age of 346 ± 6 Ma, while the inner rims yield a concordia age of 385 ± 8 Ma. Apatite from three samples from the northern metamorphic envelope yield U-Pb ages of 351.8 ± 4.4 Ma, 346.7 ± 5.9 Ma and 342.6 ± 7.1 Ma. Titanite from an amphibolite from the southern metamorphic envelope yields a U-Pb age of 345.3 ± 4.5 Ma. The age of c. 345 Ma is interpreted to represent the climax of metamorphism and the onset of simultaneous exhumation of the entire Tatra Mountains massif, and is recorded mainly in the northern part of the metamorphic cover. In the southern metamorphic envelope, distinct populations of apatite can be recognized within individual samples based on their rare earth element (REE) and actinide contents. One population of apatite (Ap1) yields a relatively imprecise U-Pb age of 340 ± 31 Ma. This population comprises apatite grains with very similar trace element compositions to apatite in the northern amphibolite samples, which suggests they crystallized under similar metamorphic conditions to their northern counterparts. A second apatite population (Ap2) yields an age of c. 328 ± 22 Ma, which is interpreted as neocrystalline apatite that formed during a late-Variscan (hydrothermal?) process involving (P, F, Ca, REE)-rich fluid migration. The youngest generation of apatite (Ap3) yields a U-Pb age of 260 ± 8 Ma and may have resulted from thermal resetting associated with the regional emplacement of Permian A-type granites. The proposed tectonic model assumes that rapid uplift (and cooling) of the Tatra block initiated at ca. 345 Ma, contemporaneous with anatexis. Subsequent fluid migration, possibly facilitated by extension related to the opening of Paleo-Tethys, affected only the southern part of the Tatra block

    Wave instabilities of a collisionless plasma in fluid approximation

    Full text link
    Wave properties and instabilities in a magnetized, anisotropic, collisionless, rarefied hot plasma in fluid approximation are studied, using the 16-moments set of the transport equations obtained from the Vlasov equations. These equations differ from the CGL-MHD fluid model (single fluid equations by Chew, Goldberger, and Low, 1956) by including two anisotropic heat flux evolution equations, where the fluxes invalidate the double polytropic CGL laws. We derived the general dispersion relation for linear compressible wave modes. Besides the classic incompressible fire hose modes there appear four types of compressible wave modes: two fast and slow mirror modes - strongly modified compared to the CGL model - and two thermal modes. In the presence of initial heat fluxes along the magnetic field the wave properties become different for the waves running forward and backward with respect to the magnetic field. The well known discrepancies between the results of the CGL-MHD fluid model and the kinetic theory are now removed: i) The mirror slow mode instability criterion is now the same as that in the kinetic theory. ii) Similarly, in kinetic studies there appear two kinds of fire hose instabilities - incompressible and compressible ones. These two instabilities can arise for the same plasma parameters, and the instability of the new compressible oblique fire hose modes can become dominant. The compressible fire hose instability is the result of the resonance coupling of three retrograde modes - two thermal modes and a fast mirror mode. The results can be applied to the theory of solar and stellar coronal and wind models.Comment: 18 pages, 11 figures, LaTeX, added explanations and references according to the referee's suggestions, fitted to the style of "Contributions to Plasma Physics" (now in press), corrections of some misprint

    Plasma Depletion and Mirror Waves Ahead of Interplanetary Coronal Mass Ejections

    Full text link
    We find that the sheath regions between fast interplanetary coronal mass ejections (ICMEs) and their preceding shocks are often characterized by plasma depletion and mirror wave structures, analogous to planetary magnetosheaths. A case study of these signatures in the sheath of a magnetic cloud (MC) shows that a plasma depletion layer (PDL) coincides with magnetic field draping around the MC. In the same event, we observe an enhanced thermal anisotropy and plasma beta as well as anti-correlated density and magnetic fluctuations which are signatures of mirror mode waves. We perform a superposed epoch analysis of ACE and Wind plasma and magnetic field data from different classes of ICMEs to illuminate the general properties of these regions. For MCs preceded by shocks, the sheaths have a PDL with an average duration of 6 hours (corresponding to a spatial span of about 0.07 AU) and a proton temperature anisotropy TpTp1.2{T_{\perp p}\over T_{\parallel p}}\simeq 1.2 -1.3, and are marginally unstable to the mirror instability. For ICMEs with preceding shocks which are not MCs, plasma depletion and mirror waves are also present but at a reduced level. ICMEs without shocks are not associated with these features. The differences between the three ICME categories imply that these features depend on the ICME geometry and the extent of upstream solar wind compression by the ICMEs. We discuss the implications of these features for a variety of crucial physical processes including magnetic reconnection, formation of magnetic holes and energetic particle modulation in the solar wind.Comment: fully refereed, accepted for publication in J. Geophys. Re

    Cosmic Ray Scattering in Compressible Turbulence

    Full text link
    We study the scattering of low-energy Cosmic Rays (CRs) in a turbulent, compressive MHD fluid. We show that compressible MHD modes -- fast or slow waves with wave lengths smaller than CR mean free paths induce cyclotron instability in CRs. The instability feeds the new small-scale Alfvenic wave component with wave vectors mostly along magnetic field, which is not a part of the MHD turbulence cascade. This new component gives feedback on the instability through decreasing the CR mean free path. We show that the ambient turbulence fully suppresses the instability at large scales, while wave steepening constrains the amplitude of the waves at small scales. We provide the energy spectrum of the plane-parallel Alfvenic component and calculate mean free paths of CRs as a function of their energy. We find that for the typical parameters of turbulence in the interstellar medium and in the intercluster medium the new Alfvenic component provides the scattering of the low energy CRs that exceeds the direct resonance scattering by MHD modes. This solves the problem of insufficient scattering of low-energy CRs in the turbulent interstellar or intracluster medium that was reported in the literature.Comment: 9 pages, 2 figures, a new section, accepted to MNRA

    Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3

    Get PDF
    Hyper–immunoglobulin E syndrome (HIES) is a primary immune deficiency characterized by abnormal and devastating susceptibility to a narrow spectrum of infections, most commonly Staphylococcus aureus and Candida albicans. Recent investigations have identified mutations in STAT3 in the majority of HIES patients studied. Despite the identification of the genetic cause of HIES, the mechanisms underlying the pathological features of this disease remain to be elucidated. Here, we demonstrate a failure of CD4+ T cells harboring heterozygous STAT3 mutations to generate interleukin 17–secreting (i.e., T helper [Th]17) cells in vivo and in vitro due to a failure to express sufficient levels of the Th17-specific transcriptional regulator retinoid-related orphan receptor γt. Because Th17 cells are enriched for cells with specificities against fungal antigens, our results may explain the pattern of infection susceptibility characteristic of patients with HIES. Furthermore, they underscore the importance of Th17 responses in normal host defense against the common pathogens S. aureus and C. albicans

    The associated features of multiple somatic symptom complexes

    Get PDF
    We are grateful to the participants in the project and to the General Practitioners and their teams who facilitated it. The study would have been impossible without the work of our research assistants: Judy Jackson, Alison Littlewood and Ian Davies. The study was funded by the UK Medical Research Council. The UK MRC had no role in study design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.Peer reviewedPostprin

    Evidence for the existence of powder sub-populations in micronized materials : Aerodynamic size-fractions of aerosolized powders possess distinct physicochemical properties

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Purpose: To investigate the agglomeration behaviour of the fine ( 12.8 µm) particle fractions of salmeterol xinafoate (SX) and fluticasone propionate (FP) by isolating aerodynamic size fractions and characterising their physicochemical and re-dispersal properties. Methods: Aerodynamic fractionation was conducted using the Next Generation Impactor (NGI). Re-crystallized control particles, unfractionated and fractionated materials were characterized for particle size, morphology, crystallinity and surface energy. Re-dispersal of the particles was assessed using dry dispersion laser diffraction and NGI analysis. Results: Aerosolized SX and FP particles deposited in the NGI as agglomerates of consistent particle/agglomerate morphology. SX particles depositing on Stages 3 and 5 had higher total surface energy than unfractionated SX, with Stage 5 particles showing the greatest surface energy heterogeneity. FP fractions had comparable surface energy distributions and bulk crystallinity but differences in surface chemistry. SX fractions demonstrated higher bulk disorder than unfractionated and re-crystallized particles. Upon aerosolization, the fractions differed in their intrinsic emission and dispersion into a fine particle fraction (< 5.0 µm). Conclusions: Micronized powders consisted of sub-populations of particles displaying distinct physicochemical and powder dispersal properties compared to the unfractionated bulk material. This may have implications for the efficiency of inhaled drug deliveryPeer reviewe

    Can the fire and rescue service work with primary care to improve identification of mental health problems in older adults?

    Get PDF
    Mental ill-health in older adults (aged 60 years and over) is often under-diagnosed and under-treated. Older adults are less likely to access mental health services due to perceived stigma and fear of being a burden. Non-traditional providers of healthcare, such as the Fire and Rescue Service (FRS) may provide a possible solution to facilitate early detection of problems and help-seeking among older adults, especially in the context of pressured statutory services. The aim of this study was to examine whether and how Fire and Rescue Service Home Fire Safety Visits (HFSV) could be optimized to include detection and sign-posting for mental health problems, particularly anxiety and depression, in older adults. A mixed-method qualitative study took place in the West Midlands, UK, in 2022. This study involved focus groups (n=24), and interviews with Fire and Rescue Service staff (n=4), to develop an in-depth, contextual understanding of acceptability and feasibility of expanding the HFSV to include identification of anxiety and depression. FRS staff were open to expanding their HFSVs to include more on mental health, providing they had sufficient training and support from partner agencies in primary and social care settings to accept referrals for service users (SU) presenting with symptoms of anxiety and/or depression. The positive reputation of FRS staff and engagement with older adults suggests that Home Fire Safety Visits could support the detection of anxiety and depression in older adults and appropriate sign-posting to other services including primary care
    corecore