20,578 research outputs found
Electrospinning of poly(methyl methacrylate) nanofibers in a pump-free process
The effects of processing parameters, including solution concentration, viscosity, nozzle diameter, voltage bias and the nozzle to collector distance, on the morpho logy and diameters of poly(methyl methacrylate) (PMMA) fibers have been systematically investigated, using a unique pump-free electrospinning method. For PMMA solution concentrations less than the critical entanglement concentration, c e, prolate spheroidshaped droplets or beads with fibers were formed, whereas at concentrations above c e, good quality beadfree fibers were formed. Quantitative analysis revealed a linear dependence between the solution viscosity and fiber diameter. Larger fiber diameters were achieved by increasing the nozzle diameter and voltage bias. Increasing the bias voltage has the additional effect of broadening the diameter distribution, as a result of splaying and splitting. By contrast, when the strength of the electrical field was reduced by increasing the distance between the nozzle and collector, the overall fiber dia meter was reduced
Устроєві засади громадського судочинства й народна правосвідомість на українських землях у складі Великого Князівства Литовського
Effects of local hypothermia-rewarming on physiology, metabolism and inflammation of acutely injured human spinal cord.
In five patients with acute, severe thoracic traumatic spinal cord injuries (TSCIs), American spinal injuries association Impairment Scale (AIS) grades A-C, we induced cord hypothermia (33 °C) then rewarming (37 °C). A pressure probe and a microdialysis catheter were placed intradurally at the injury site to monitor intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), tissue metabolism and inflammation. Cord hypothermia-rewarming, applied to awake patients, did not cause discomfort or neurological deterioration. Cooling did not affect cord physiology (ISP, SCPP), but markedly altered cord metabolism (increased glucose, lactate, lactate/pyruvate ratio (LPR), glutamate; decreased glycerol) and markedly reduced cord inflammation (reduced IL1β, IL8, MCP, MIP1α, MIP1β). Compared with pre-cooling baseline, rewarming was associated with significantly worse cord physiology (increased ICP, decreased SCPP), cord metabolism (increased lactate, LPR; decreased glucose, glycerol) and cord inflammation (increased IL1β, IL8, IL4, IL10, MCP, MIP1α). The study was terminated because three patients developed delayed wound infections. At 18-months, two patients improved and three stayed the same. We conclude that, after TSCI, hypothermia is potentially beneficial by reducing cord inflammation, though after rewarming these benefits are lost due to increases in cord swelling, ischemia and inflammation. We thus urge caution when using hypothermia-rewarming therapeutically in TSCI
Temporal changes in rock uplift rates of folds in the foreland of the Tian Shan and the Pamir from geodetic and geologic data
Understanding the evolution of continental deformation zones relies on quantifying spatial and temporal changes in deformation rates of tectonic structures. Along the eastern boundary of the Pamir‐Tian Shan collision zone, we constrain secular variations of rock uplift rates for a series of five Quaternary detachment‐ and fault‐related folds from their initiation to the modern day. When combined with GPS data, decomposition of interferometric synthetic aperture radar time series constrains the spatial pattern of surface and rock uplift on the folds deforming at decadal rates of 1–5 mm/yr. These data confirm the previously proposed basinward propagation of structures during the Quaternary. By fitting our geodetic rates and previously published geologic uplift rates with piecewise linear functions, we find that gradual rate changes over >100 kyr can explain the interferometric synthetic aperture radar observations where changes in average uplift rates are greater than ~1 mm/yr among different time intervals (~10¹, 10⁴‾⁵, and 10⁵‾⁶ years)
Selection for Replicases in Protocells
PMCID: PMC3649988This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
What happens if you single out? An experiment
We present an experiment investigating the effects of singling out an individual on trust and trustworthiness. We find that (a) trustworthiness falls if there is a singled out subject; (b) non-singled out subjects discriminate against the singled out subject when they are not responsible of the distinct status of this person; (c) under a negative frame, the singled out subject returns significantly less; (d) under a positive frame, the singled out subject behaves bimodally, either selecting very low or very high return rates. Overall, singling out induces a negligible effect on trust but is potentially disruptive for trustworthiness
Paradoxical roles of antioxidant enzymes:Basic mechanisms and health implications
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate “paradoxical” outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of “antioxidant” nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that “paradoxical” roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways
Quantum nondemolition measurement of mechanical motion quanta
The fields of opto- and electromechanics have facilitated numerous advances
in the areas of precision measurement and sensing, ultimately driving the
studies of mechanical systems into the quantum regime. To date, however, the
quantization of the mechanical motion and the associated quantum jumps between
phonon states remains elusive. For optomechanical systems, the coupling to the
environment was shown to preclude the detection of the mechanical mode
occupation, unless strong single photon optomechanical coupling is achieved.
Here, we propose and analyse an electromechanical setup, which allows to
overcome this limitation and resolve the energy levels of a mechanical
oscillator. We find that the heating of the membrane, caused by the interaction
with the environment and unwanted couplings, can be suppressed for carefully
designed electromechanical systems. The results suggest that phonon number
measurement is within reach for modern electromechanical setups.Comment: 8 pages, 5 figures plus 24 pages, 11 figures supplemental materia
52-week efficacy and safety of telbivudine with conditional tenofovir intensification at week 24 in HBeAg-positive chronic Hepatitis B
Background and Aims: The Roadmap concept is a therapeutic framework in chronic hepatitis B for the intensification of nucleoside analogue monotherapy based on early virologic response. The efficacy and safety of this approach applied to telbivudine treatment has not been investigated.
Methods: A multinational, phase IV, single-arm open-label study (ClinicalTrials.gov ID NCT00651209) was undertaken in HBeAg-positive, nucleoside-naive adult patients with chronic hepatitis B. Patients received telbivudine (600 mg once-daily) for 24 weeks, after which those with undetectable serum HBV DNA (<300 copies/mL) continued to receive telbivudine alone while those with detectable DNA received telbivudine plus tenofovir (300 mg once-daily). Outcomes were assessed at Week 52.
Results: 105 patients commenced telbivudine monotherapy, of whom 100 were included in the efficacy analysis. Fifty-five (55%) had undetectable HBV DNA at Week 24 and continued telbivudine monotherapy; 45 (45%) received tenofovir intensification. At Week 52, the overall proportion of undetectable HBV DNA was 93% (93/100) by last-observation-carried-forward analysis (100% monotherapy group, 84% intensification group) and no virologic breakthroughs had occurred. ALT normalization occurred in 77% (87% monotherapy, 64% intensification), HBeAg clearance in 43% (65% monotherapy, 16% intensification), and HBeAg seroconversion in 39% (62% monotherapy, 11% intensification). Six patients had HBsAg clearance. Myalgia was more common in the monotherapy group (19% versus 7%). No decrease in the mean glomerular filtration rate occurred in either treatment group at Week 52.
Conclusions: Telbivudine therapy with tenofovir intensification at Week 24, where indicated by the Roadmap strategy, appears effective and well tolerated for the treatment of chronic hepatitis B.
Trial Registration: ClinicalTrials.gov NCT0065120
- …
