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ABSTRACT:  Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are 29 

generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated 30 

enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, 31 

enzymes metabolizing them will inherently promote either health or disease, depending upon the 32 

physiological context. It is thus misleading to consider conventionally-called antioxidant 33 

enzymes to be largely, if not exclusively, health-protective. Because such notion is nonetheless 34 

common, we herein attempt to rationalize why this simplistic view should be avoided. First we 35 

give an updated summary of physiological phenotypes triggered in mouse models of 36 

overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of 37 

striking cases that demonstrate “paradoxical” outcomes, i.e. increased fitness upon deletion of 38 

antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by 39 

which these phenotypes are mediated via chemical, biological, and metabolic interactions of the 40 

antioxidant enzymes with their substrates, downstream events and cellular context. Furthermore,  41 

we propose novel treatments of antioxidant enzymes-related human diseases by deliberate 42 

targeting dual roles of the pertaining enzymes, and outlined potential of “antioxidant” nutrients 43 

and phytochemicals, via regulating the expression or function of antioxidant enzymes, in 44 

preventing, treating, or aggravating chronic diseases. We conclude that “paradoxical” roles of 45 

antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular 46 

mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes 47 

always beneficial is not only conceptually misleading but also clinically hazardous if such 48 

notions underpin medical treatment protocols based upon modulation of redox pathways.   49 

Key Words: Antioxidant Enzyme, Knockout, Overexpression, Oxidative Stress, Redox 50 

Signaling 51 

52 



4 
 

I. INTRODUCTION 53 

 54 

Antioxidant enzymes are often discussed in scientific research and daily life as key players of 55 

metabolism that promote healthy cells, tissues and organisms. The term best relates to enzymes 56 

that lower the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), or 57 

counteract their downstream cellular effects of excessive oxidation. ROS and RNS are produced 58 

from aerobic biogenesis or by oxidative enzymes, and being chemically reactive they have the 59 

capacity to damage cellular components. Nature has evolved three layers of antioxidant defense 60 

in the body. Small molecular antioxidants, including uric acid, glutathione (GSH), and vitamins 61 

C and E, offer the first line of defense to scavenge ROS/RNS directly and thus prevent or delay 62 

the initiation of various oxidative stresses. Damage-removing or repairing enzymes function as 63 

the last defense to regenerate biomolecules damaged from oxidative injury. Between these two 64 

layers, antioxidant enzymes serve as an intermediate defense to detoxify ROS/RNS into less 65 

reactive species. Superoxide (O2
-
) and hydrogen peroxide (H2O2) represent arguably the best-66 

known and most-produced ROS, with the former scavenged by superoxide dismutases (SOD)
1
 67 

and the latter by catalase (CAT), glutathione peroxidases (GPX), and peroxiredoxins (PRX). 68 

Thioredoxin reductases (TrxR) are in addition required to maintain functions of thioredoxins 69 

(Trx), PRX, methionine sulfoxide reductases (Msr) and many other redox-regulatory 70 

enzymes/proteins by regenerating protein thiols (411) in parallel with glutaredoxins (Grx) 71 

                                                 
1
Genes and proteins are in this article typically named according to HUGO 

(http://www.genenames.org) and MGI 

(http://www.informatics.jax.org/mgihome/nomen/gene.shtml) guidelines for human and mouse, 

respectively, unless other names or abbreviations are by convention more prevalent in the 

literature. In some cases mice have been studied with overexpression from human transgenes, 

which may be somewhat confusing in terms of nomenclature. We believe, however, that the 

references given in the Tables of this review article will serve as useful reference material for 

any reader interested in the exact gene constructs that are being discussed. 

http://www.genenames.org/
http://www.informatics.jax.org/mgihome/nomen/gene.shtml
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utilizing GSH to catalyze reduction of protein disulfide substrates (180, 395), These ROS-72 

metabolizing and reductive enzymes, which also play important roles in RNS homeostasis, are 73 

widely considered to be the major antioxidant enzymes and are the focus of this review article. 74 

 75 

During the past two decades, developments of antioxidant enzyme gene knockout and 76 

overexpression mouse models (Table 1) have enabled us to not only verify “anticipated” 77 

metabolic health-promoting functions of these enzymes, but also to reveal often neglected 78 

“paradoxical” roles of antioxidant enzymes triggering metabolic disorders. It has indeed become 79 

clear that many antioxidant enzymes are more than just protective ROS/RNS scavengers. They 80 

regulate many redox signaling pathways and may also exhibit pro-oxidant functions or functions 81 

independent of their redox activities.  82 

 83 

A number of chronic diseases are associated with genetic or metabolic alterations of antioxidant 84 

enzymes, displaying either lower or increased activities, depending upon the actual enzyme and 85 

disease. Meanwhile, certain “antioxidant” nutrients and phytochemicals are able to regulate 86 

antioxidant enzyme expressions or functions with health implications. Therefore it is important 87 

to have a better understanding of the “paradoxical” functions of antioxidant enzymes in 88 

physiology, which explain how their overexpression can promote disease or their deletion can be 89 

health-promoting. It is our goal that this review will help to support awareness of the involved 90 

molecular mechanisms and thus be useful in advancing a more balanced view of antioxidant 91 

enzyme and redox biology in medicine.  92 
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II. IMPACTS OF KNOCKOUT AND OVEREXPRESSION  93 

 94 

Superoxide- and H2O2-metabolizing enzymes, including SOD, catalase, GPX and PRX, are 95 

generally considered to be the primary antioxidant enzyme defense system in the body. However, 96 

the only antioxidant enzymes that have thus far been found to be essential for mouse embryonic 97 

development and thus lethal when genetically deleted are GPX4 (68, 293, 725), the two genes for 98 

cytosolic and mitochondrial TrxR, Txnrd1 (51, 305) and Txnrd2 (123), their cognate substrate 99 

Trxs, Txn1 (438) and Txn2 (490), as well as an essential gene for synthesis of GSH (604). 100 

Deletion of the Trsp1 (encoding selenocysteine tRNA (tRNA
[Ser]Sec

) gene that is required for 101 

synthesis of all selenoproteins is also embryonically lethal (54). Genetic deletion of several other 102 

antioxidant enzymes trigger strong phenotypes even if not being embryonically lethal, while 103 

certain antioxidant enzymes seem to have an impact only under severe oxidative stress or in 104 

specific tissues.  105 

 106 

While the SOD family represents the only enzymes able to scavenge O2
-
, catalyzing its 107 

disproportionation into O2 and H2O2, multiple classes of enzymes detoxify H2O2 or organic 108 

peroxides. Catalases scavenge H2O2 by catalyzing its disproportionation into O2 and H2O. Some 109 

selenoproteins and thiol peroxidase such as GPXs, and PRXs, catalyze the 2-electron reduction 110 

of peroxides to form water using reducing equivalents from GSH or Trx, respectively. The 111 

functions of GPXs and PRXs are thus intimately coupled to those of glutathione reductase (GR) 112 

and TrxR, enzymes that catalyze the reduction of oxidized GSH (GSSG) and Trx, respectively, 113 

using reducing equivalents from NADPH (185, 411). In addition, exciting progress has been 114 

made in understanding functions of Se-dependent methionine-R-sulfoxide reductase 1 (MsrB1) 115 
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that is a Trx-dependent enzyme. Much progress has also been made in the understanding of 116 

selenoprotein P (Sepp1) and Trsp gene that are both crucial entities for Se homeostasis and 117 

functions of all selenoproteins. Because prior reviews have discussed many of the detailed 118 

phenotypes in mice with knockout or overexpression of different antioxidant enzymes (62, 69, 119 

71, 80, 122, 337, 361, 377, 499), we will provide herein only an updated synopsis on the same 120 

subject, as a basis for the subsequent chapter focusing on their “paradoxical” roles.    121 

 122 

A. Superoxide Dismutase Family 123 

 124 

1. SOD1 125 

 126 

 Knockout of Sod1 does not cause embryonic lethality in mice, but results in impairment of the 127 

reproduction function of both males and females. Whereas the males produce sperm with 128 

decreased motility and fertilizing ability (207, 658), the females display a marked increase in 129 

postimplantation embryonic lethality (264) associated with elevated two-cell arrest or cell death 130 

(334). The Sod1
-/-

 mice develop anemia (299) and type 1-like diabetes (684). These mice also 131 

show a reduced lifespan, a high incidence of hepatocarcinogenesis in late life, and oxidative 132 

damage-accelerated spontaneous mutations in liver and kidney (73, 167). Although mice 133 

overexpressing SOD1 are apparently normal with a reduced mutation frequency in cerebellum 134 

(357), these animals exhibit certain abnormalities found in patients with Down's syndrome (23, 135 

24, 524, 580).   136 

 137 
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Knockout and overexpression of SOD1/Sod1 exert negative and positive impacts, respectively, 138 

on mouse susceptibility or resistance to neurodegenerative disorders, cerebral and myocardial 139 

injuries, diabetic syndrome, and tissue intoxications and dysfunctions (Table 2). However, most, 140 

if not all, of the reported “mechanisms” are associations between phenotypes and genetic 141 

manipulations, without genuine knowledge of the exact molecular mechanisms that lead to the 142 

observed phenotypes. Importantly, the association of SOD1 mutations with familial amyotrophic 143 

lateral sclerosis (ALS) does not seem to be due to effects on enzyme activity but rather an 144 

increased propensity for protein aggregation (203, 373, 474, 491). Impacts of Sod1 knockout or 145 

SOD1 overexpression in mice on neurodegenerative disorders may be related to effects on Aβ 146 

oligomerization (477), dopaminergic neurodegeneration (746), lipid peroxidation (536, 647), and 147 

protein nitration (294). In cell studies, altering the enzyme affects dopamine autoxidation and 148 

changes of GSH (242), and neuroinflammation driven by activation of nuclear factor-κB (NFκB), 149 

release of nitric oxide (NO), and proinflammatory cytokines (153).  150 

 151 

Overexpression of SOD1 protects against various brain and neurological injuries by: 1) 152 

attenuating the mitochondria-mediated apoptosis pathway (e.g., release of cytochrome c and 153 

nuclear translocation of endonuclease G) (624, 737); 2) suppressing the induced expression of 154 

matrix metalloproteinases (467); and 3) activating Akt/glycogen synthase kinase 3β (GSK-3β) 155 

survival signaling (169, 313).  Meanwhile, the protection against cerebral ischemia is conferred 156 

in part by up-regulating Akt and down-regulating p38 mitogen-activated protein kinase (MAPK), 157 

and NFκB (100).  In contrast, Sod1 knockout potentiates mice to ischemic injuries by activating 158 

NFκB (100), and lung dysfunction by increasing nuclear factor of activated T-cells (NFAT) and 159 

NFATc3 activities (546). Sod1 knockout can also trigger kidney dysfunction by enhancing the 160 
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oxidative stress-induced phosphorylation and the conversion of iron responsive protein-1 (IRP1) 161 

to the iron responsive element (IRE)-binding form, which may accelerate the reabsorption of iron 162 

by renal tubular cells (734). Inhibition of matrix protein synthesis induced by high glucose (129) 163 

and the NO-O2
-
 interaction (148) contributes to the protection of SOD1 overexpression against 164 

diabetic nephrophathy. Seemingly, several, if not all, of these SOD1-altered phenotypes are 165 

associated with specific redox signaling effects, rather than a direct free radical scavenging.   166 

 167 

2. SOD2  168 

 169 

Sod2
-/-

 mice, unlike Sod1
-/-

 mice, develop cardiomyopathy and neonatal or perinatal lethality, 170 

despite variations in postnatal survival time and neuronal injury (370, 392). Thus, the reported 171 

phenotypes of Sod2 knockout are mostly derived from haplodeficiency or tissue-specific 172 

inactivation of the gene. While Sod1
-/-

 female mice become infertile (264), ovaries from 173 

postnatal Sod2
-/-

 mice undergo normal folliculogenesis and can produce viable offspring when 174 

transplanted to the bursa of wild-type hosts, suggesting the enzyme dispensable for the ovarian 175 

function (443). Interestingly, strain-dependent overexpression of SOD2 is associated with growth 176 

retardation and decreased fertility in transgenic mice (542) (Table 3). Although the Sod2
+/-

 mice 177 

are viable and no more sensitive to hyperoxia (304), their mitochondria show decreased 178 

respiratory capability and elevated induction of the permeability transition (697).   179 

 180 

Likewise, knockout and overexpression of Sod2/SOD2 produces negative and positive impacts, 181 

respectively, on mouse susceptibility or resistance to a number of acute or chronic disorders 182 

(Table 3). Such opposite effects of the enzyme on neurodegenerative disorders are related to 183 
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regulating mitochondrial ROS generation and function, shifting the amyloidogenic Aβ 184 

composition (435), slowing amyloid deposition and memory deficit (164, 435), and modulating 185 

dopaminergic neurodegeneration (11, 342).  Similarly, the effects on ischemic cerebral injuries 186 

are through regulations of blood-brain barrier, matrix metalloproteinases (MMPs), and 187 

inflammatory responses (425). Knockout of Sod2 aggravates cellular senescence and aging (653, 188 

675), though overexpression of Sod2/SOD2 fails to extend life span despite preserving age-189 

associated loss of mitochondrial function (308, 374).  Overexpression of the enzyme protects 190 

against diabetes and complication through improved mitochondrial respiration and integrity and 191 

decreased iNOS and NO production (50, 226, 273, 351, 408, 597). Interestingly, old Sod2
+/-

192 

Gpx1
-/-

 mice have an elevated incidence of neoplasms (750), suggesting that knockout of 193 

multiple antioxidant enzymes can have synergistic effects on carcinogenesis.  194 

   195 

3. SOD3  196 

 197 

Knockout of Sod3, unlike Sod1 or Sod2, does not affect mouse development and lifespan or 198 

further worsen the shortened lifespan of Sod1
-/-

 mice, suggesting limited overlapping roles 199 

between these enzymes (81, 593). Respective protective and detrimental outcomes from 200 

overexpression and knockout of SOD3/Sod3 are seen in brain, heart and vascular system, kidney, 201 

lung and immune system, as well as in ischemic injuries and carcinogenesis (Table 4).  202 

   203 

This extracellular SOD isoenzyme plays a pivotal role in protecting against a number of lung 204 

disorders including oxidative injury, inflammation, and fibrosis (7, 8, 81, 189, 212, 248, 318, 492, 205 

528, 539, 625, 672). Different from those lacking Sod1, Sod2, or catalase, the Sod3
-/-

 mice are 206 
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susceptible to hyperoxia and induced oxidative injury (81). Protective roles of the enzyme in 207 

pulmonary fibrosis have been thoroughly reviewed (205), and its unique importance in 208 

pulmonary function is attributed to its extracellular localization, the pathological importance of 209 

extracellular matrix expression, and cytokine release elicited by extracellular ROS. Involved 210 

signaling events include modulation of transforming growth factor beta (TGF-β) and early 211 

growth response protein 1 (Egr-1) expression (672), preserving angiogenesis (528), and 212 

maintaining NO bioavailability and subsequent modulating cGMP and NFκB activity (7). The 213 

unique protection by SOD3 against lung oxidative insults offers potential of administrating of the 214 

enzyme to relieve pulmonary disorders (205). Moreover, the distribution of SOD3, rather than 215 

the total SOD activity, in the extracellular space is crucial for protecting heart against the 216 

pressure overload as this insult renders the Sod3
-/-

 mice elevated myocardial O2
-
 production and 217 

nitrotyrosine formation, increases of ventricular collagen I & III, MMP-2 and -9, and decreases 218 

in ratio of GSH/GSSG (glutathione disulfide) (414). Knockout of Sod3 renders mice susceptible 219 

to the collagen-induced arthritis (570), while overexpression of SOD3 in mouse synovial tissue 220 

attenuates the inflammatory arthritis (736), via opposite modulations of the production of the 221 

pro-inflammatory cytokines such as IL-1β and TNFα, and MMPs. Knockout of Sod3 also 222 

impairs renal-vascular function, in part by decreasing Akt and eNOS phosphorylation and heme 223 

oxygenase 1 activity (326). 224 

 225 

B.  Catalase 226 

 227 

Catalase is ubiquitously expressed, and is predominantly located in peroxisomes of all types of 228 

mammalian cells with the exception of erythrocytes (669) and human vascular cells (607). A 229 
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certain activity of catalase is also detected in mitochondria of rat heart (541). In humans, 230 

acatalesemia is a comparatively common genetic disease with near-total lack of catalase, which 231 

is typically considered to be asymptomatic but may be associated with increased risk of a 232 

number of diseases  (224). Cat
-/-

 mice show normal development and fertility (268), and are not 233 

more susceptible to the hyperoxia-induced lung injury than the wild-type controls. 234 

Overexpression of catalase in mitochondria prolongs the lifespan of mice and attenuates age-235 

associated pathological changes (137, 504, 584, 654). The overall outcomes of Cat knockout are 236 

rather limited, especially in comparison with those associated with Sod. This may in part be due 237 

to the fact that GPX and PRX (90, 184) play major roles in removing H2O2 at relatively low 238 

concentrations in the cells, whereas the contribution of catalase increases when intracellular 239 

H2O2 is high (428). 240 

 241 

In contrast, promotion of health by CAT/Cat overexpression has been shown in many tissues and 242 

conditions (Table 5). Overexpression of CAT protects against cardiovascular injuries or 243 

dysfunction (424, 723, 724), which is particularly relevant due to the lack of the enzyme activity 244 

in the human vascular smooth muscle and endothelial cells (607). Aortas from apolipoprotein E 245 

knockout mice overexpressing CAT show smaller and relatively early stages of atherosclerotic 246 

lesions compared with the control (722).  Cardiac-specific overexpression of rat Cat attenuates 247 

the paraquat-induced myocardial geometric and contractile alteration by alleviating JNK-248 

mediated endoplasmic reticulum stress (208), prolongs lifespan, and suppresses aging-induced 249 

cardiomyocyte contractile dysfunction and protein damage (712). Also, this specific 250 

overexpression of rat Cat rescues the anthrax lethal toxin- or lipopolysaccharide-induced cardiac 251 

contractile dysfunction by alleviating oxidative stress, autophagy, and mitochondrial injury (317, 252 
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660). The elevated catalase antagonizes the alcohol dehydrogenase-associated contractile 253 

depression after acute ethanol exposure in murine myocytes, partially through improving 254 

intracellular Ca
2+

 handling and ablation of alcohol dehydrogenase-amplified JNK activation and 255 

Erk de-activation (748, 749). Comparatively, the endothelium specific overexpression of CAT 256 

shows a weak protection against myocardial or vascular ischemia/reperfusion injury, despite 257 

preserving the responsiveness of the heart to adrenergic stimulation (704). Knockout of Cat 258 

accelerates diabetic renal injury through upregulation of TGF-β and collagen secretion (289), 259 

whereas overexpression of Cat protects against the pathogenesis via attenuation of 260 

angiotensinogen and Bax function and normalized expression of angiotensin converting enzyme 261 

2 (ACE-2) (58, 603).  262 

 263 

C. Glutathione Peroxidase Family   264 

 265 

GPX enzymes utilize reducing equivalents from GSH to reduce peroxides (60, 94, 185). Eight 266 

isoforms of GPX are known, of which five are selenoproteins (GPX1-4 and GPX6). The three 267 

selenium-independent GPX enzymes rely upon thiol rather than selenol chemistry. Among the 268 

GPX enzymes, GPX1 is the most abundant and ubiquitous isoform. GPX6 is found as a 269 

selenoprotein only in humans, while the orthologous Gpx6 has a catalytic cysteine (Cys) in mice 270 

and several other species (353). Several recent reviews have summarized physiological roles of 271 

GPX enzymes in relation to other selenoproteins (61, 360, 361, 554). Our discussion herein 272 

mainly summarizes the key findings from genetic mouse models. 273 

 274 

1. GPX1 275 
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 276 

Gpx1 is not essential for survival or reproduction, despite its protection against cataract and 277 

slight growth retardation (110, 141, 172, 265). Knockout of Gpx1 sensitizes mice to pro-oxidant-278 

induced oxidative injuries, whereas overexpression of the enzyme confers extra protection 279 

against such injuries in various tissues (Table 6). The elevated susceptibility of the Gpx1
-/-

 mice 280 

to various acute oxidative injuries, including increased lethality induced by high doses of 281 

paraquat and diquat, relates to accelerated oxidation of NAD(P)H, proteins, and lipids (108, 111, 282 

141, 195, 196). The importance and mechanism for Gpx1 protection depends upon the intensity 283 

of stress as well as antioxidant status of the challenged animals (108, 111, 141, 195, 196, 376) 284 

but high levels of dietary vitamin E do not replace protection of Gpx1 (113). It should also be 285 

noted that Gpx1 is one of the most Se-responsive selenoproteins, whereby low dietary Se intake 286 

rapidly lowers its expression in most tissues (631), suggesting that the Se status of the control 287 

mice will affect the comparative outcome of Gpx1 removal.  288 

 289 

Protections against disease conditions by GPX1 are illustrated by increased susceptibility of 290 

Gpx1
-/-

 mice and resistance of Gpx1 overexpressing mice to various oxidative insults, including 291 

ischemia/reperfusion and hypoxic ischemic injury in the brain, heart, and liver (128, 195, 341, 292 

397, 564, 595, 691, 732). Furthermore, Gpx1 protects against cardiomyopathy induced by 293 

coxsackievirus B3 through suppression of viral genome mutation (37), atherosclerosis in a pro-294 

diabetic ApoE
-/-

 mouse model (115, 384, 652), doxorubicin-induced and angiotensin II-mediated 295 

functional declines and cardiac hypertrophy (15, 206, 714, 733), defective blood flow and 296 

epithelial progenitor circulation in a model of ischemia-induced angiogenesis (202), diabetic 297 
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nephropathy in association with fibrosis and inflammation (115, 640, 641), and detrimental 298 

effects of cigarette smoking or influenza A infection in the lung (165, 726).  299 

 300 

Although the exact molecular mechanisms for involvement of Gpx1 in the above-described 301 

pathogeneses are largely unknown, the existing evidences point out ROS scavenging and redox 302 

signaling as the main modes of action. The Gpx1
-/-

 mouse brain shows elevated oxidative stress, 303 

caspase-3 cleavage, and 3-nitrotyrosine formation (128, 341). The decreased migration of 304 

endothelial progenitor cells in the Gpx1
-/- 

mice toward vascular endothelial growth factor (VEGF) 305 

and capability of these cells in promoting the formation of vascular network are indeed related to 306 

the elevated intracellular ROS levels (202). The protection of Gpx1 against diabetic nephropathy 307 

is associated with decreases of hydroperoxides, 8-isoprostane, nitrotyrosine, 4-hydroxynonenal, 308 

and proteins implicated in fibrosis and inflammation (115, 640, 641).  309 

 310 

2. GPX2 311 

 312 

GPX2 was first found in the gastrointestinal tissues (117). There are no Gpx2 transgenic mouse 313 

lines reported (Table 1). Like the Gpx1
-/-

 mice, Gpx2
-/-

 mice appear normal unless they are 314 

stressed by oxidative challenges (678). The Gpx1 expression is up-regulated in the colon and 315 

ileum of Gpx2
-/- 

mice (186), which may explain why they do not develop cancer spontaneously 316 

but develop squamous cell tumor when additional stress such as UV exposure is employed (678). 317 

Likewise, spontaneous polyps are developed in Gpx1
-/-

Gpx2
-/-

 mice, probably due to elevated 318 

intestinal lipid peroxidation with onset of inflammatory bowel disease (118, 174) (Table 7).  319 

Notably, nuclear factor (erythroid-derived 2) (NF-E2)-related factor (NRF2), a redox-sensing 320 
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transcription factor, may counteract oxidative injuries partially through up-regulation of Gpx2, at 321 

least in lung (613). Given its high expression in the gastrointestinal tract, GPX2 likely exerts 322 

antioxidant or anti-tumorigenic functions there, in association with GPX1 and NRF2. However, a 323 

basic question still remains as whether knockout of Gpx2 itself elevates intracellular H2O2 levels 324 

or affects NRF2 (352). 325 

 326 

3. GPX3 327 

 328 

GPX3 is mainly synthesized in proximal convoluted tubule cells of kidney (22). While the 329 

majority of renal GPX3 is secreted into plasma, some retains at the basement membranes to 330 

account for 20% of total selenium in kidneys (429, 505). Independent of its peroxidase activity, 331 

this enzyme transfers Se from the dams to the fetus (72), while Sepp1 instead of Gpx3 provides 332 

Se to neonates via the milk (257). Knockout of Gpx3 and overexpression of GPX3 in mice 333 

produce essentially opposite impacts on ROS-related events (Table 7). The Gpx3
-/-

 mice display 334 

cerebral infarctions, along with elevated oxidative stress, blood clot, the induction of P-selectin, 335 

and lowered plasma cGMP level (311) and colitis-associated carcinoma with increased 336 

inflammation in the colon (32). Overexpression of GPX3 renders mice resistant to 337 

acetaminophen (APAP) overdose (458) but leads to hyperthermia (457). Thus, some 338 

physiological effects of Gpx3/GPX3 modulation can be viewed as unexpected if the enzyme 339 

would solely have a role in extracellular H2O2 scavenging. It is thereby possible that it has yet 340 

unrecognized physiological functions that are not directly related to the extracellular enzymatic 341 

activity. 342 

 343 
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4. GPX4 344 

 345 

GPX4 has three isoforms in cytosol, mitochondria, and sperm nucleus, and enzymatically 346 

exhibits substrate preference toward phospholipid hydroperoxide (667). Interacting with 347 

guanine-rich sequencing-binding factor 1, GPX4 suppresses lipid peroxidation and apoptosis 348 

during embryogenesis (664).  Because the global knockout of Gpx4 renders embryonic lethality, 349 

tissue-specific and Gpx4 isoform-specific conditional knockout mice have been generated 350 

(Table 7). Collectively, increased levels of lipid peroxides by localized Gpx4 deficiency lead to: 351 

1) endothelial cell death and thrombus formation in a vitamin E-dependent manner (707); 2) 352 

12/15-lipoxygenase dependent apoptosis-inducing factor (AIF) translocation and neuronal 353 

apoptosis (590); 3) mitochondrial potential decline and infertility of spermatozoa (292); and 4) 354 

defective photoreceptor maturation (663). Recently it was shown that cell death by ferroptosis is 355 

triggered upon genetic removal of Gpx4 in either kidney (194) or T cells (441). Clearly, Gpx4 is 356 

important for protections against the detrimental effects of lipid peroxidation, but the enzyme 357 

also has an intriguing peroxidase-independent structural role in sperm maturation (667). 358 

 359 

Results from isoform-specific knockout of Gpx4 indicate that: 1) mitochondrial Gpx4 protects 360 

against apoptosis during hindbrain development (52); 2) mitochondrial Gpx4 suppresses protein 361 

thiol content, and is essential for male fertility (581); and 3) nuclear Gpx4 is essential for atrium 362 

formation (52), but indispensable for sperm maturation (581). Because the mitochondrial or 363 

nuclear Gpx4
-/-

 mice are viable, the cytosolic Gpx4 confers the embryonic lethality phenotype of 364 

the global Gpx4 knockout. Reciprocally, overexpression of GPX4/Gpx4 in the global Gpx4
-/-

 365 

mice, detected only in liver and heart, can rescue their embryonic lethality and attenuate the 366 



18 
 

induced mitochondrial potential declines (393, 548) (Table 7). Similarly, the mitochondrion-367 

specific Gpx4 overexpression maintains mitochondrial membrane potentials and protects against 368 

ischemia/reperfusion in the heart (136).  369 

 370 

D. Thioredoxin Reductase (TrxR) Family  371 

 372 

TrxRs are a family of NADPH-dependent selenoproteins, which play important roles as key 373 

propagators of the Trx system and thus several Trx-dependent enzymes, including PRX, Msr, 374 

ribonucleotide reductase (RNR), sulfiredoxin, and more (17, 122, 412, 423, 571). Three 375 

mammalian genes encode different TrxR isoforms, in mice being Txnrd1 encoding cytosolic 376 

TrxR1 (215, 325, 507), Txnrd2 encoding mitochondrial TrxR2 (also called TR3) (325, 454, 565, 377 

628) and Txnrd3 encoding thioredoxin glutathione reductase that is mainly expressed in 378 

spermatids of the testis and seems to be important for spermatogenesis (211, 623, 626, 627, 659). 379 

 380 

All Txnrd genes are transcribed in a complex manner, resulting in divergent forms of each 381 

isoenzyme that differ from each other mainly in their N-terminal domains (88, 95, 139, 211, 442, 382 

455, 507, 572, 573, 622, 629), potentially reflecting many levels of regulation. The phenotypes 383 

of mouse knockout models targeting the Txnrd1 and Txnrd2 genes are summarized in Table 8. 384 

No knockout models targeting Txnrd3 have yet been reported and overexpression of TrxR 385 

isoenzymes is difficult to obtain, due to their intricate expression patterns.  386 

 387 

1. TrxR1 388 

 389 
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The full Txnrd1
-/-

 knockout mice display early embryonic lethality, with one study reporting 390 

lethality between embryonic days 8.5 and 10.5 mainly due to decreased cellular proliferation 391 

(305), and the other study embryonic death before day 8.5 with a lack of formation of mesoderm 392 

(51). Differences in genetic targeting between these studies, one removing the last exon of the 393 

gene (305) and the other removing the first exon (51), may possibly help to explain the different 394 

phenotypes. Notably, the knockout in mice of the Trx1 gene encoding Trx1 (see below) that is 395 

the presumed main substrate of TrxR1, gives even earlier embryonic death than upon TrxR1 396 

removal (438). This suggests that functions of TrxR1 and Trx1 are not always directly linked in a 397 

physiological setting, which may be due to the fact that the GSH system can also keep Trx1 398 

reduced through Grx activities (162). It is, however, clear that TrxR1 is an essential enzyme for 399 

embryonic development in mice. 400 

 401 

Heart-specific Txnrd1
-/-

 mice are normal (305), as are mice with neuron-specific deletion of the 402 

enzyme (617). Interestingly, however, expression of the enzyme in glial cells is essential for 403 

normal development of the central nervous system (617). When deleted in either hepatocytes, 404 

mouse embryonic fibroblasts or B-cell lymphoma cells, the Nrf2-driven and mainly GSH-405 

dependent enzyme systems are typically strongly upregulated (302, 430, 520, 535, 634). In fact, 406 

it was found that the Nrf2 induction can be so strong upon TrxR1 deletion or inhibition that cells 407 

become even more resistant to certain events of oxidative challenge, than those having normal 408 

expression of TrxR1 (63, 405, 634) . These apparently paradoxical impacts on mouse 409 

susceptibility to stress upon TrxR1 removal will be further elaborated in the following chapters. 410 

 411 

2. TrxR2 412 
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 413 

Similarly to TrxR1, the mainly mitochondrial isoenzyme TrxR2 is essential for embryonic 414 

development. Interestingly, however, Txnrd2 knockout yields early embryonic death in a more 415 

tissue specific manner, presenting liver apoptosis, impaired hematopoiesis and insufficient heart 416 

development (123). Knockout of mitochondrial Trx2 that is presumed to be the main substrate of 417 

TrxR2, however, displays a more severe phenotype with massive widespread apoptosis and open 418 

anterior neural tube (490). This illustrates that the functions of TrxR2 are not always directly 419 

linked to those of Trx2, which is similar to the situation with Trx1 and TrxR1 (see above).   420 

 421 

There was a lack of overt phenotype when TrxR2 was conditionally knocked out in the nervous 422 

system (617) or in B- and T-cells (209), while its conditional knockout in heart produced obvious 423 

detrimental effects (123, 280). Recently, it was also shown that TrxR2 knockout in tumor cells 424 

prevented tumor growth because of a lack of hypoxia-inducing factor (HIF) function and JNK 425 

activation (254). These observations suggest that although most cells and tissues are dependent 426 

upon mitochondrial function, the physiological effects of genetic deletion of the mitochondrial 427 

TrxR2 enzyme are more specific than what would be explained by a generally impaired 428 

mitochondrial function in the whole organism.   429 

 430 

E. Additional Mouse Models for Knockouts of Selenoproteins 431 

 432 

 433 

Most, if not all, of the 24-25 selenoproteins in the mammalian proteomes (353) presumably have 434 

redox activity. Readers are referred to other recent reviews for a full survey of these proteins (84, 435 

124, 250, 322, 360). However, in the context of this article it is worth considering MsrB1, a 436 
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Trx1-dependent selenoenzyme, and Sepp1, as their physiological antioxidant roles have been 437 

studied using several genetic mouse models. Knockout of MsrB1 renders mice prone to lipid 438 

peroxidation and protein oxidation in tissues as well as defective actin polymerization in 439 

macrophages upon lipopolysaccharide challenge (190, 371) (Table 9). Neuronal protection by 440 

Sepp1, a predominant extracellular selenoprotein that delivers selenium from liver to other 441 

tissues and has peroxidase activity (576, 639), may be attributed to its selenium transport 442 

function, because deletion of its C-terminal region being rich in selenocysteine residues (amino 443 

acids 240-361) was sufficient to produce severe neurodegeneration in mice (258, 533, 583). 444 

Liver-specific expression of SEPP1 in Sepp1
-/-

 mice enhances their brain selenium content and 445 

rescues the neurological defects (559), further supporting the important role of this selenoprotein 446 

in the selenium transport.  447 

 448 

The redox activity of all selenoenzymes depends on the function of selenocysteine (Sec), which 449 

is cotranslationally incorporated at re-defined specific UGA codons in a process that requires 450 

tRNA
[Ser]Sec

, the transcriptional product of the Trsp gene.  Because Trsp
-/-

 mice are embryonically 451 

lethal (54), various conditional knockouts and variants of Trsp have been made to study roles and 452 

regulations of selenoproteins in specific tissues, resulting in several interesting phenotypes 453 

(Table 9). Intriguingly, knockout of Trsp in endothelial cells causes embryonic lethality and in 454 

muscle and liver induces postnatal death (76, 609). Global or conditional Trsp
-/-

 mice expressing 455 

wild-type or mutant Trsp transgene have also been generated (78, 591). These Trsp-altered 456 

mouse models help understand tissue-specific functions of selenium, and allow for recapitulation 457 

of mechanisms behind the classical selenium-deficiency syndrome, Kashin-Beck disease (161). 458 

A recent review (361) offers detailed discussion on the pleiotropic effects of Trsp targeting that 459 
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are likely to be derived from the combined effects of modulation of multiple selenoproteins at 460 

once. 461 

 462 

F.  Thioredoxin Family 463 

 464 

Trxs are small thiol-disulfide oxidoreductases with a Cys-Gly-Pro-Cys active site and are present 465 

in all living cells. The reduced forms with a dithiol motif in the active site catalyze disulfide 466 

reduction reactions, generating oxidized forms of Trx with a disulfide in the active site, which is 467 

again reduced by NADPH via TrxRs (276, 396).  The isoforms of Trx have a broad range of 468 

functions in mammalian cells (18), including to serve as electron donors for Prxs that are 469 

controllers of the intracellular redox state together with GSH (274), and being major protein S-470 

denitrosylases (91). The structure of Trxs comprises a central core of β-strands surrounded by α-471 

helices that defines the Trx-fold, now known to be present in a large number of proteins denoted 472 

the Trx superfamily of proteins. This includes Grx (395), glutathione S-transferases, GPXs, 473 

PRXs and proteins of the protein disulfide isomerases (PDI) family, which are all built from Trx 474 

domains (21). In the context of this review the main results of genetic mouse experiments for 475 

analyses of Trx1, Trx2, Grx1 and Grx2 are discussed as follows. 476 

 477 

1. Trx1 478 

 479 

Trx1 (encoded by Txn in mice) is ubiquitously expressed in the cytosol/nucleus, and has a large 480 

number of functions in cellular redox control and antioxidant defense (18). One of those 481 

functions is to provide reducing power to RNR that is essential for DNA synthesis. Because the 482 
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global knockout of Txn in mice induces early embryonic lethality (437), shortly after 483 

implantation with differentiation and morphogenesis defects, studies in adult mice were instead 484 

enabled using a dominant-negative mutant line in which the active site Cys-32 and Cys-35 485 

residues were altered to Ser (dnTrx-Tg) (140). These functionally Trx1-deficient mice display 486 

decreased Trx activity in the lung and are sensitive to ambient air at room temperature. These 487 

mice experience genotoxic stress, as evidenced by decreased activities of aconitase and NADH 488 

dehydrogenase, lower mitochondrial energy production, but increased levels of p53 and 489 

Gadd45α expression. These dnTrx-Tg mice are also manifested with increased levels of pro-490 

inflammatory cytokines (140), which are aggravated by exposure to hyperoxia. In contrast, 491 

overexpression of enzymatically active Trx1 in the lung (140) helps maintain redox balance and 492 

mitochondrial function with decreased inflammation. Mice overexpressing TXN have increased 493 

resistance to a range of oxidative stress insults (643). In addition, Trx1 has been shown to protect 494 

against joint destruction in a murine model of arthritis (657). Overexpression of the protein 495 

furthermore seems to promote fetal growth by reducing oxidative stress in the placenta (665), 496 

prevent diabetic embryopathy (314), and extend mainly the earlier part of the life span in mice 497 

with a prolonged youth phenotype (527). 498 

 499 

Trx1 is secreted from cells under inflammation and oxidative stress and is detectable in plasma 500 

(482). Of particular interest is that the extracellular Trx1 is taken up by cells and has been 501 

proposed as an effective antioxidant therapy (439, 483, 688). Its presumed antioxidant and anti-502 

apoptotic properties are tightly coupled with the reduced form of Trx1 binding to thioredoxin 503 

interacting protein 1(TXNIP) (475, 735) or apoptosis signaling kinase (ASK1) (290, 310). 504 

Extracellular Trx1 is however also found in plasma as a truncated form called Trx80, resulting 505 
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from α-secretase cleavage (213) and known to act as an inflammatory mediator (Th1) via effects 506 

on the immune system and monocytes (522). Both Trx1 and Trx80 seem to have a positive 507 

effects protecting from Alzheimer´s disease in the brain (213). Because Trx80 lacks redox 508 

activity together with TrxR1 (523) and since extracellular forms of these proteins are likely to 509 

remain oxidized, it is possible and even likely that some of their physiological roles are unrelated 510 

to redox activities.  511 

 512 

2. Trx2 513 

 514 

Trx2, with a mitochondrial leader sequence, is targeted to the mitochondria, where it plays a 515 

crucial role in controlling of ROS by acting as a reductant of Prx3 in concert with the GSH 516 

system and Grx2 (240, 744). Knockout of the Trx2 gene (490) induces embryonic lethality with 517 

massively increased apoptosis and exencephaly with open anterior neural tube. Cardiac specific 518 

deletion of Trx2 (283) produces spontaneous dilated cardiomyopathy at one month of age, with 519 

increased heart size, reduced ventricular wall thickness, and progressive decline in left 520 

ventricular contractile function result in mortality due to heart failure at young age. In 521 

cardiomyocyte-specific Trx2
-/-

 mice, mitochondrial function and ATP production are declined 522 

and ASK1-dependent apoptosis accelerated. Interestingly, humans with dilated cardiomyopathy 523 

have lowered Trx2 protein levels in heart tissue, suggesting that these mice could be a good 524 

model of the human disease (283). 525 

 526 

3. Grx1 527 
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Grx1 catalyzes GSH-disulfide oxidoreduction reactions (275), deglutathionylation of S-528 

gluthionylated proteins (277) and reduction of Trx1 by GSH when TrxR is inactivated (162). 529 

Surprisingly, knockout of Grx1 (267) results in only a mild phenotype without major effects on 530 

ischemia reperfusion injuries. However, knockout of the gene offers protection against 531 

inflammation or defective revascularization in diabetes (4, 270), which will be further elaborated 532 

in the following chapter. 533 

 534 

4. Grx2 535 

Grx2 is encoded by a gene resulting in splice variants including Grx2a located in mitochondria 536 

and Grx2c in the cytosol/nucleus. Knockout of Grx2 (710) induces early onset of age-dependent 537 

cataract in mice. Grx2 is also required to control mitochondrial function since knockout affects 538 

cardiac muscle (426, 427), giving rise to larger hearts and high blood pressure. 539 

 540 

G.  Peroxiredoxin Family 541 

 542 

The PRX enzymes are a family of abundantly present 20-30 kDa peroxidases (185, 562, 706). 543 

These homodimeric proteins fall into three varieties distinguished by their reaction mechanisms 544 

and the number of cysteine residues required for catalysis: typical 2-Cys (in mammals PRX1-4), 545 

atypical 2-Cys (mammalian PRX5), and 1-Cys (mammalian PRX6) (561, 594, 706). Both types 546 

of 2-Cys PRX utilize the reducing power of NADPH via the Trx/TrxR system to reduce their 547 

active site disulfides, formed upon catalysis with peroxide reduction, back to active dithiols. On 548 

the other hand, 1-Cys PRX, mainly utilize GSH as the reducing agent (706). Furthermore, the 549 

various PRX isoforms exhibit different subcellular localizations (271, 706). As the PRX enzymes 550 
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are highly abundant, accounting for as much as 1% of soluble cellular protein (673, 706) and are 551 

excessively reactive with H2O2, they are likely to be critical for both oxidative stress protection 552 

as well as redox signaling (562, 616, 698, 699).  553 

 554 

1. Effects of Prx knockout  555 

 556 

Mice lacking Prx1–4 and 6 are viable, but exhibit increased ROS levels and sensitivity to 557 

oxidative insults (300, 375, 389, 461, 484, 683).  In general, both Prx1
-/-

 and Prx2
-/-

 mice appear 558 

healthy and are fertile, but have hemolytic anemia and increased atherosclerotic plaques (339, 559 

518), suggesting that Prx1 and Prx2 protect red blood cells from oxidative stress (375, 484). 560 

Indeed, they exhibit splenomegaly, Heinz bodies in their blood, and morphologically abnormal 561 

red blood cells, which are high in ROS (375, 484). Prx3
-/-

 mice are healthy in appearance and 562 

could grow to maturity, but exhibit elevated intracellular ROS, including in lung tissue (389).  563 

Intratracheal inoculation of lipopolysaccharide to the Prx3
-/-

 mice results in pronounced lung 564 

inflammation (389). Likewise, Prx6
-/-

 mice also appear normal, but are very sensitive to 565 

oxidative insults (461, 683). 566 

 567 

2. Effects of Prx overexpression  568 

 569 

Overexpression of the PRX enzyme genes generally confers protection against different forms of 570 

oxidative stress. For instance, overexpression of Prx3 in heart mitochondria of mice suppressed 571 

cardiac failure after myocardial infarction (440). In addition, the Prx3 overexpressing mice have 572 

lower mitochondrial H2O2 concentrations and are protected against hyperglycemia and glucose 573 
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intolerance (102). Overexpression of Prx2 inhibits the ischemic damage of neurons (56). 574 

Overexpression of PRX4 in the pancreas of mice suppresses the TRAIL-mediated apoptosis, 575 

protects pancreatic islet β-cells against injury caused by single high-dose streptozotocin (STZ)-576 

induced insulitis, and attenuates inflammation (155). When Prx6 is overexpressed, development 577 

of cataract in mouse and rat lenses are significantly delayed (355). These transgenic mice exhibit 578 

extra resistance to the lung injury induced by hyperoxia (687). However, global Prx6 579 

overexpression does not protect against diet-induced atherosclerosis despite lowering levels of 580 

H2O2 (531).  581 

582 
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III. PARADOXICAL OUTCOMES  583 

 584 

Although knockout of several antioxidant enzymes is detrimental and their overproduction 585 

beneficial to health, the opposite impacts have also been increasingly observed. This chapter 586 

describes a series of such apparently “paradoxical” cases that reveal metabolic benefits of 587 

deleting major antioxidant enzymes, or harmful effects of overexpressing them.          588 

 589 

A. SOD Family 590 

 591 

1. Elevated resistance to APAP toxicity by knockout of Sod1  592 

  593 

APAP, also known as acetaminophen or paracetamol, is the active component of Tylenol and 594 

many other over-the-counter analgesics. A life-threatening hepatotoxicity of APAP overdose 595 

depends upon the liver enzyme CYP2E1 (cytochrome P450 2E1) that catalyzes 596 

biotransformation of APAP to a highly reactive intermediate, N-acetyl-p-benzoquinoneimine 597 

(NAPQI), which in turn can cause depletion of hepatic GSH and excessive liver necrosis (306). 598 

Interestingly, genetic deletion of several antioxidant enzymes yields increased APAP resistance 599 

in mice, which has been reported for Gstp1 (255), TrxR1 (see below) and Sod1. 600 

 601 

While an intraperitoneal injection of 600 mg APAP/kg results in 75% mortality in wild-type 602 

mice within 20 h, all such treated Sod1
-/-

 mice survive for the entire 70 h duration of study (379). 603 

Moreover, the Sod1
-/-

 mice survived nearly three times as long as, and showed much less hepatic 604 

injuries, than wild-type mice following both higher (1,200 mg/kg) and lower (300 mg/kg) doses 605 

of APAP injection, respectively. As shown in FIGURE 1, this astonishing resistance to APAP 606 
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intoxication is associated with at least four separate mechanisms. Firstly, these mice have a 50% 607 

reduction in activity of the NAPQI-producing enzyme CYP2E1 (cytochrome P450 2E1) in liver. 608 

The down-regulated CYP2E1 activity thus helps attenuate NAPQI formation and the resultant 609 

GSH depletion and protein adduct formation. Indeed, hepatocytes isolated from Sod1
-/-

Gpx1
-/-

 610 

mice display a lower susceptibility to APAP-induced cell death, but higher susceptibility to 611 

NAPQI toxicity as compared with cells from wild-type mice (754). Secondly, hepatic protein 612 

nitration plays a crucial role in mediating APAP-induced hepatotoxicity (343). Knockout of Sod1 613 

nearly completely blocks APAP-induced hepatic protein nitration (379). This is intriguing as the 614 

enzyme knockout or depletion presumably elicits elevated O2
-
 production and thus subsequent 615 

peroxynitrite formation for protein nitration, provided that NO is available. Strikingly, SOD1 616 

was previously shown to catalyze peroxynitrite-mediated nitrotyrosine formation in vitro (298). 617 

Later, the enzyme was demonstrated to be required for the protein nitration mediated by APAP 618 

or LPS in murine liver (758). Thirdly, compensatory inductions of other protective antioxidant 619 

enzymes (379, 756) and, fourthly a blunted cell death signaling (757) also attribute to the APAP 620 

resistance of the Sod1
-/-

 mice. Seemingly, the above-described Sod1 deficiency-derived 621 

protection against the APAP overdose is cytosolic-specific. The mitochondrial Sod2
+/-

 mice are 622 

actually more prone to the APAP-induced liver toxicity than their wild-type controls, potentially 623 

through prolonged JNK activation, exaggerated mitochondrial dysfunction with nuclear DNA 624 

fragmentation and necrosis (200, 545).  It remains unclear whether Sod2
+/-

 mice are altered with 625 

expression of CYP2E1 and metabolism of APAP. However, SOD2 may serve a more important 626 

role than SOD1 as mitochondrion is a main target of the APAP toxicity. As the protein level of 627 

hepatic CYP2E1 in the Sod1
-/-

 is not altered (379), the activity loss probably results from an 628 

oxidative modifcation. However, another group failed to detect similar decreases in the baseline 629 
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activity of CYP2E1 in Sod1
-/-

 mice, despite conflicting  effects of ethanol on the enzyme activity 630 

between their own studies (133, 329).  631 

 632 

2. Protection against irradiation-induced neuronal damages by knockout of Sod  633 

 634 

Knockout of Sod1 or Sod2 decreases a baseline of neurogenesis, but ameliorates radiation-635 

induced decline of neurogenesis (183, 286) (FIGURE 2). Following irradiation, Sod2
+/-

 mice 636 

preserve normal hippocampal-dependent cognitive functions and normal differentiation pattern 637 

for newborn neurons and astroglia, which otherwise are damaged in irradiated wild-type mice. 638 

However, irradiation leads to a disproportional reduction in newborn neurons of the Sod2
+/-

 mice 639 

following behavioral training, suggesting that Sod2 haploinsufficiency renders newborn neurons 640 

susceptible to metabolic stress (126). In contrast, irradiation of Sod3
-/-

 mice enhances 641 

hippocampus-dependent cognition and decreases hippocampal nitrotyrosine formation (540). 642 

These results suggest that chronically-elevated O2
-
 anion levels and/or the lower production of 643 

H2O2 resulting from Sod3 knockout, may be protective against irradiation-induced damages in 644 

neurogenesis and cognition. In line with this result, overexpression of SOD3 impairs long-term 645 

learning and potentiation in hippocampal area CA1, further suggesting that O2
-
, rather than being 646 

considered exclusively neurotoxic, may also be a signaling molecule necessary for normal 647 

neuronal function (644).The underlying molecular mechanisms and signaling pathways for these 648 

phenotypes await further investigation. Likewise, knockout of Sod1 enhances recovery after 649 

closed head injury-induced brain trauma in mice, which is associated with attenuated activation 650 

of NFκB and subsequent decreased death-promoting signals due to down-regulated H2O2 651 

production (41).  652 
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 653 

3. Neurological disorders associated with overexpression of SOD1/Sod1   654 

SOD1 expression is associated with two types of neurological diseases: Down's syndrome (with 655 

elevated SOD activity) and ALS (associated with SOD1 mutations) (569, 612). Indeed, SOD1-656 

overexpressing mice manifest certain abnormalities that resemble physiological effects seen in 657 

Down's syndrome, including withdrawal and destruction of some terminal axons and 658 

development of multiple small terminals (23, 24), a defect in platelet's dense granule responsible 659 

for the uptake and storage of blood serotonin (580), thymus and bone marrow abnormalities 660 

(524), and an impairment of hippocampal long-term potentiation (201). Meanwhile, SOD1 661 

overexpression causes mitochondrial vacuolization, axonal degeneration, and premature motor 662 

neuron death, and accelerates motor neuron degeneration in mice expressing an ALS-inducing 663 

SOD1 mutant (303). The SOD1 overexpression also impairs muscle function and leads to typical 664 

signs of muscular dystrophy in mice (525, 550). In fact, transgenic mice overexpressing SOD1 665 

display aberrant protein expression profiles in neurons and mitochondria of hippocampus (605, 666 

606), indicating that elevated SOD1 activity in Down's Syndrome is not just a side-effect or a 667 

compensation in response to the increased oxidative stress, but may be part of the cause for the 668 

pathophysiology.  669 

 670 

Overexpression of SOD1 impairs peripheral nerve regeneration and increases development of 671 

neuropathic pain after sciatic nerve injury with a disturbed inflammatory reaction at the injury 672 

site (350), exacerbates abnormalities in hematopoiesis and radiosensitivity in a mouse model of 673 

ataxia-telangiectasia (529), and promotes aging as indexed by mitochondrial DNA deletion in the 674 

acoustic nerve of transgenic mice (120). Neurons from the SOD1 overexpressing mice exhibit 675 



32 
 

higher susceptibility to kainic acid-mediated excitotoxicity, associated with a chronic pro-676 

oxidant state as manifested by decreased cellular GSH and altered Ca homeostasis (30). All these 677 

negative impacts, along with known biochemical and neurological mechanisms, of SOD1 678 

overexpression on various neurological disorders are summarized in FIGURE 3.  679 

 680 

In contrast, other studies have shown either negligible effects of Sod1 overexpression on 681 

toxicities induced by neurotoxins including kainite, glutamate and N-methyl-D-aspartate 682 

(NMDA) (347, 729) or even protections against similar insults in vivo (260, 586) and in vitro (53, 683 

92). These seemingly contradictory findings may be confounded in part with differences in 684 

extents of Sod1 overexpression, acute vs. chronic experimental settings, the timing of 685 

observation, and the cellular capacity of H2O2 catabolism at the testing condition. For example, 686 

when treated with a O2
-
 donor, overexpression of SOD1 increases neuronal vulnerability due to 687 

increased H2O2 accumulation, while overexpression of the gene in astrocytes that exhibit a 688 

greater H2O2 catabolism capacity than do neurons actually leads to an increased resistance to O2
-
 689 

toxicity (104). Therefore, the “paradoxical” function of SOD1/Sod1 overexpression in the central 690 

nervous system may largely rely on: 1) whether the generated extra H2O2 results in a burden 691 

beyond affordable cellular clearing capacity; 2) whether the induced burst of O2
-
 is more 692 

detrimental to cell survival than the converted extra amount of H2O2; and 3) whether effects of 693 

the enzyme expression are unrelated to its enzymatic activity.  694 

 695 

4.  Impaired immune functions and detrimental effects by overexpression of SOD1/Sod1   696 

 697 
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Overexpression of SOD1 in intraperitoneal macrophages decreases their microbicidal and 698 

fungicidal activity, along with increased intracellular production and release of H2O2, decreased 699 

extracellular release of O2
-
, and inhibited NO production following endotoxin stimulation (456). 700 

It was intriguing why enzymatically derived NO production became decreased when O2
-
 anion 701 

levels were diminished. The authors noted that nitrocompound metabolism in macrophages was 702 

affected by the overproduction of SOD1, but did not give mechanistic explanations. Possibly the 703 

reduced activities of NFκB and Erk1/2 in the SOD1 overexpressing macrophages, which are 704 

upstream regulators of iNOS, lead to downregulation of iNOS expression and thus lower NO 705 

production. However, this hypothesis remains to be experimentally confirmed.  Transgenic mice 706 

overexpressing SOD1 show no increased resistance to TNFα-induced endotoxic shock (144), but 707 

a higher sensitivity to malaria infection as reflected by an earlier onset and increased rate of 708 

mortality (220), and activation-induced DNA fragmentation in their splenic T cells (513). 709 

 710 

Doubling the expression of SOD1 does not extend, but instead causes a slight reduction of 711 

lifespan in mice (284).  Likely due to elevated chronic oxidative stress, Sod1 overexpression 712 

leads to an increased heart rate variability (646) and accelerates the loss of cone function (668). 713 

Contrary to its protection against most of ischemic injuries, overexpression of SOD1 in the in-714 

utero ischemia/reperfusion in pregnancy led to brain damages in both adult and fetal mice (383). 715 

Sod1
-/-

 mice exposed to chronic ethanol consumption exhibit decreased alcohol dehydrogenase 716 

activity and little induced CYP2E1 activity, which suppresses ethanol metabolism and precludes 717 

the resultant steatosis (133), while these mice are more susceptible to the acute ethanol-induced 718 

liver injury (329). This apparently contrasting impact of Sod1 knockout on injuries associated 719 
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with either acute or chronic ethanol intake underscore the stress-type and/or temporal-720 

dependence of the function and (patho)physiological relevance of this enzyme. 721 

  722 

5. Diverse effects of SOD2/Sod2 overexpression on alcohol intoxication and cancer cell 723 

survival 724 

 725 

While overexpression of Sod2 protects against liver mitochondrial DNA depletion and 726 

respiratory complex dysfunction after alcohol binge exposure via inhibition of the formation of 727 

peroxynitrite (433), the overexpression aggravates prolonged (7 weeks) alcohol intake-induced 728 

hepatic toxicity (368, 433) (FIGURE 4). The prolonged ethanol intake selectively triggered 729 

hepatic iron elevation, lipid peroxidation, respiratory complex I protein carbonyls and 730 

dysfunction, mitochondrial DNA lesion and depletion in Sod2 overexpressing mice. Because 731 

administration of an iron chelator (deferoxamine) prevents all these adverse effects, hepatic iron 732 

accumulation is likely the crucial factor for the metabolic disorder (368). It has been suggested 733 

that alcohol administration decreases the expression of hepcidin, leading to abnormally active 734 

duodenal ferroportin and increased intestinal absorption of iron, which gradually increases 735 

hepatic iron accumulation (246). Although it remains unclear why in the referenced study (368) 736 

the iron overload was only found in Sod2 overexpressing mice, elevated Sod2 activity was 737 

linked to hepatic iron accumulation through modulation of iron homeostasis proteins in alcoholic 738 

patients (481, 633). 739 

 740 

A proposed mechanism for aggravated hepatotoxicity by Sod2 overexpression may be as follows: 741 

the hepatic iron overload could lead to a decreased mitochondrial manganese uptake and 742 
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increased mis-incorporation of iron in the active site, forming Fe-substituted Sod2. The Fe-Sod2 743 

is stable and lacks superoxide dismutase activity, but gains hydroxyl radical generating activity 744 

in the presence of hydroxyl radicals derived from H2O2, which in turn is generated by the 745 

manganese-Sod. Consequently, increased production of hydroxyl radicals could lead to the 746 

above-mentioned lipid peroxidation and other oxidative injuries (368). Apparently, increased 747 

hepatic iron and H2O2 might also generate hydroxyl radicals through Fenton reactions.  The 748 

anticipated diminished O2
-
 anion levels due to Sod2 overexpression might furthermore remove 749 

its beneficial roles in limiting propagation of lipid peroxidation and blunt alcohol-induced 750 

increases of iNOS and subsequent up-regulation of peroxisome proliferator activated receptor 751 

gamma coactivator 1 (PGC-1), which otherwise promotes mitochondrial DNA replication (368). 752 

Another contributing factor could be the decrease in the mitochondrial transcription factor A 753 

(Tfam) in Sod2 overexpressing mice following alcohol administration. However, further studies 754 

are required to clarify the different cause-effect relationships with regards to the observed 755 

phenotypes. It should be noted that in rats, overexpression of Sod2 in liver prevents steatosis, 756 

inflammation, necrosis, and apoptosis following prolonged alcohol (4 weeks) administration 757 

(694). Thus, there may also be different impact between species of Sod2 overexpression on 758 

ethanol metabolism and intoxication. 759 

 760 

Recently, differential roles SOD2 have been proposed between early and late stages of 761 

carcinogenesis. At the early stage, a lower SOD2 level may facilitate transformed phenotypes by 762 

potentiating mitochondrial defects, whereas at the later stage a higher SOD2 level protects cell 763 

from mitochondrial injury and contributes to tumor growth and metastasis (149). The roles of 764 

SOD2 become further complicated when cancer cells are challenged with increased oxidative 765 
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stress. Overexpression of SOD2 in HeLa cervical cancer cells promotes their growth when 766 

growth factors are withdrawal, suggesting that SOD2 may promote tumor-cell survival in vivo at 767 

conditions unfavorable to cell growth by counteracting the intracellular oxidative processes that 768 

can additively impair cell growth and viability (514). Moreover, overexpression of SOD2 769 

promotes survival of cancer cells treated with radiation, cytokines or drugs (263, 387, 432, 469, 770 

632), likely through activation of NFκB and AP-1 signaling by the SOD2-mediated conversion 771 

of H2O2. Therefore, overexpression of SOD2 may promote cancer due to increased cancer cell 772 

resistance to the cytotoxicity of therapeutic treatments.  773 

 774 

B. Catalase 775 

 776 

1. Diabetic developments induced by catalase overexpression  777 

 778 

The β cell-specific overexpression of rat Cat in non-diabetic background mice shows no 779 

detrimental effects on islet function (717) and protects against the diabetogenic effect of STZ (99, 780 

717). However, this type of overexpression provides no protection against cytokine-mediated 781 

toxicity in isolated islets, despite a suppression of ROS formation (99, 717). Interestingly, 782 

overexpression of CAT in mitochondria, compared with that in cytoplasm, confers stronger 783 

protections against the cytokine-induced cytotoxicity in insulin-producing cells (230, 407), 784 

indicating an important role of mitochondrial ROS in the cytokine toxicity of autoimmune 785 

diabetes.  786 

 787 
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Strikingly, β cell-specific overexpression of Cat in nonobese diabetic mice accelerates 788 

spontaneous diabetes onset in males and cyclophosphamide-induced diabetes in both males and 789 

females, and sensitizes isolated islets to cytokine injuries. FIGURE 5 depicts several described 790 

divergent effects of catalase overexpression on susceptibilities to diabetes, but none of these 791 

effects are fully understood mechanistically. There was a down-regulation of Akt/Foxo1/Pdx1 792 

survival pathway in islets associated with the cyclophosphamide-induced autoimmune type 1 793 

diabetes (390). It was suggested that insulin/IGF-1 mediated phosphorylation of Akt might be 794 

down-regulated by PTP-1B (a tyrosine phosphatase) that is inhibited by ROS (H2O2) and 795 

catalase overexpression prevented the ROS inhibition of PTP-1B (390, 574). Although there are 796 

no direct experimental data to support these notions, maintaining adequate intracellular H2O2 797 

may be needed for activating protective responses of β cells in autoimmune type 1 diabetes.  798 

 799 

In contrast, Cat overexpression consistently protects against diabetic nephropathy (58, 603) or 800 

insulin resistance-induced cardiac contractile dysfunctions (160). Overexpression of Cat also 801 

attenuates high glucose-induced reduction of endothelial cell tight-junction proteins and the 802 

subsequent brain blood barrier (BBB) dysfunction in diabetes (402). These data suggest 803 

differential roles of catalase in pancreas and other organs in diabetic vs. physiological conditions. 804 

 805 

2. Cell type-dependent inhibition of proliferation by catalase overexpression  806 

 807 

Elevating catalase activity, similar to that of Sod, may alter the sensitivity of cancer cells to 808 

chemotherapy (216, 416). Overexpressing CAT in the cytosolic and especially in the 809 

mitochondrial compartments of HepG2 cells potentiates TNF--induced apoptosis by promoting 810 
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activation of caspases-3 and -8 (26). In contrast, overexpression of Cat in a murine lymphoid cell 811 

line enhances resistance to dexamethasone-induced apoptosis and exhibits increased net tumor 812 

growth in nude mice, which is associated with a delay of mitochondrial cytochrome c release and 813 

altered glucose and energy metabolism (648, 649). Overexpression of CAT inhibits proliferation 814 

of endothelial cells (740) and vascular smooth muscle cells (66, 602) by suppressing Erk1/2 and 815 

p38 MAPK signaling (602) and promoting a Cox2-dependent apoptosis (66). This highlights the 816 

need for a physiological level of endogenous H2O2 for survival and proliferation of vascular cells. 817 

Interestingly, the proliferation rate is elevated in vascular smooth muscle cells of Sod1
+/-

 and 818 

Sod2
+/-

 mice, along with higher activity of divergent mitogenic signaling pathways.  The 819 

heterozygosity of Sod1 leads to preferential activation of Erk1/2 and p38 MAPK, while that of 820 

Sod2 causes activation of JAK/STAT pathway in smooth muscle cells (422). This opposite 821 

outcome is intriguing, because overexpression of Cat presumably diminishes intracellular H2O2 822 

whose formation would be supposed to be lower due to the Sod haplodeficiency. Nevertheless, 823 

these diverse effects underscore the physiological importance to tightly regulate intracellular 824 

H2O2 levels for control of vascular cell proliferation. Furthermore, specific overexpression of 825 

CAT in myeloid lineage cells impairs perfusion recovery associated with fewer 826 

neovascularization and blunted inflammatory response following a femoral artery ligation, 827 

suggesting that H2O2 derived from myeloid cells such as macrophages plays a key role in 828 

promoting neovascularization in response to ischemia and in the development of ischemia-829 

induced inflammation (269). Notably, decreases of H2O2 levels upon overexpression of catalase 830 

were verified by direct assays in vascular smooth muscle cells and myeloid cells in the above-831 

mentioned studies, but only by indirect methods in endothelial cells and lymphoid cells. 832 

 833 
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C.  GPX Family 834 

 835 

1. Improved insulin sensitivity and decreased insulin synthesis upon knockouts of Gpx1 and 836 

Sod1   837 

 838 

While knockouts of Gpx1 and Sod1 impair islet function, pancreas integrity, and body glucose 839 

homeostasis, these mice present improved insulin sensitivity in liver and muscle (680, 684). This 840 

improvement is mainly associated with an increased phosphorylation of muscle Akt at Thr
308

 and 841 

Ser
473

 after injection of insulin (684) (FIGURE 6). Presumably, this “unanticipated” benefit is 842 

attributed to elevated intracellular ROS that inhibit protein phosphatase activities and thereby 843 

attenuate dephosphorylation of Akt (33, 680).  Moreover, an increased IRβ protein in the liver of 844 

the Sod1
-/-

, but not in the Gpx1
-/-

, mice may also contribute to the improvement (684). 845 

Meanwhile, Gpx1
-/-

 mice are resistant to the high fat diet-induced insulin resistance and show 846 

favorable responses including decreased-expression of gluconeogenic genes (G6pc, Pck1 and 847 

Fp1), increased glucose uptake by white gastric and diaphragm skeletal muscles through 848 

membrane docking of glucose transporter 4 upon AS160 phosphorylation on Thr
642

, and 849 

enhanced insulin-induced oxidation of phosphatase and tensin homolog (Pten) and PI3K/Akt 850 

signaling (406) in their embryonic fibroblast cells.  851 

 852 

Comparatively, the Sod1 knockout exerts stronger impacts on insulin synthesis and secretion, 853 

glucose and lipid metabolism, and islet integrity than that of Gpx1 (684). Simultaneous ablation 854 

of both enzymes does not result in additive or severer metabolic outcomes. The Sod1
-/-

 mice 855 

show more apparent pancreatitis than the Gpx1
-/-

 mice that are more susceptible to the cerulein-856 
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induced amylase increase. Although hypoinsulinemia and decreased pancreatic β cell mass are 857 

caused by knockouts of both of Gpx1 and Sod1 via down-regulation of the key transcription 858 

factor Pdx1 in pancreatic islets, the former seems to decrease only Pdx1 protein whereas the 859 

latter exerts suppressions at three levels of the Pdx1 regulation: epigenetic, mRNA, and protein 860 

(684) (FIGURE 7). Likewise, knockout of Sod1, but not Gpx1, up-regulates protein phosphatase 861 

2b/sterol responsive element binding protein (SREBP)-mediated lipogenesis and down-regulates 862 

the AMPK-mediated gluconeogenesis (680). Apparently, there are several overlapping as well as 863 

distinctive mechanisms for Sod1 and Gpx1 in regulation of glucose homeostasis and lipid 864 

metabolism (378).  It should also be noted that reductive stress may be as destructive as 865 

oxidative stress in the etiology of diabetes and obesity (753).  866 

 867 

2.  Potentiation of the peroxynitrite-induced toxicity by GPX1/Gpx1  868 

 869 

Peroxynitrite represents a major RNS formed from reaction of O2
-
 with NO, which occurs at a 870 

diffusion-limited rate (39). Although peroxynitrite induces nitration in a variety of biomolecules, 871 

a major activity indicator is the nitrosylation of protein tyrosine residues (39). Peroxynitrite-872 

mediated protein nitration is indeed involved in the pathogenesis of many human diseases (297, 873 

530). Impacts and mechanisms of the influence of GPX1 activity on peroxynitrite-induced 874 

oxidative damage have been studied in different systems (198, 610). FIGURE 8 summarizes 875 

“paradoxical” roles and mechanisms of bovine GPX1, Gpx1 knockout, and GPX1 876 

overexpression in coping with the PN-mediated protein nitration and toxicity in these systems. 877 

 878 

Using a cell-free system, Sies et al found that GPX1 can serve as a peroxynitrite reductase (610). 879 

However, that function of GPX1 could not be verified by Fu et al. (198) using primary 880 
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hepatocytes isolated from Gpx1
-/-

 mice. In stark contrast, Gpx1
-/-

 hepatocytes are instead 881 

extremely resistant to peroxynitrite-induced DNA fragmentation, cytochrome c release and 882 

caspase-3 activation, GSH depletion, protein nitration, and cell death (198). Interestingly, 883 

treating hepatocytes with S-nitroso-N-acetyl-penicillamine (SNAP; a NO donor) in addition to 884 

diquat (O2
-
/H2O2 donor) produces synergistic cytotoxicity, and protein nitration induced by these 885 

two pro-oxidants together is attenuated in Gpx1
-/-

 cells (197). While knockout of Gpx1 in mice 886 

exerts partial protection on the APAP- or LPS-induced hepatic toxicity and protein nitration (343, 887 

755, 756), overexpressing GPX1 sensitizes mice to the APAP-induced hepatotoxicity and 888 

lethality (458). The metabolism of APAP in GPX1 overexpressing mice leads to a substantial 889 

decrease in the replenishment of GSH in liver and blood compared with the controls. In contrast, 890 

overexpressing GPX3 and Sod1 in the same study renders mice resistant to the APAP toxicity. 891 

These observations again underscore the complexity or unpredictability of seemingly similar 892 

antioxidant enzymes in coping with a given oxidative insult. 893 

 894 

3.  Protection against kainic acid-induced lethality and seizure by Gpx1 knockout  895 

 896 

Kainic acid is an analog of glutamate that is widely used to induce limbic seizures and model the 897 

disease of epilepsy in rodents (40, 217). Administration of the compound activates NMDA 898 

receptors in hippocampus and other vulnerable brain regions (31, 43). As an event following 899 

NMDA activation (364, 365), there is increased oxidative stress including formations of O2
-
, NO, 900 

and peroxynitrite in the central nervous system after the kainic acid injection (217, 452, 568). 901 

Thus, antioxidants such as ascorbate, GSH and EUK-134 (a synthetic SOD and catalase mimic) 902 

can decrease the neurotoxic effects of kainic acid and its seizure-associated neuropathology (421, 903 

575). Strikingly, Gpx1
-/-

 mice are much more resistant to kainic acid-induced seizure (frequency 904 
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and interval), neuronal injury, and lethality compared with wild-type controls (309). This 905 

increased resistance involves inactivation of the NMDA receptor via thiol oxidation of its 906 

NMDA receptor-1 subunit, possibly due to elevated H2O2 levels in the brain of Gpx1
-/-

 mice, and 907 

subsequent attenuation or block of the kainic acid-induced oxidative injuries  (309) (FIGURE 9). 908 

As described above, neurons from SOD1 overexpressing mice exhibit elevated susceptibility to 909 

the kainic acid-mediated excitotoxicity (30). Therefore, certain levels of ROS or chronic 910 

oxidation in the brain are needed for a functional NMDA receptor, with long-term use of 911 

antioxidants possibly thereby leading to detrimental rather than protective effects.  912 

 913 

4. Type 2 diabetes-like phenotypes induced by Gpx1 overexpression  914 

 915 

Global overexpression of Gpx1 in non-obese or non-diabetic mice results in hyperinsulinemia, 916 

hyperglycemia, hyperlipidemia, insulin resistance, β cell hypertrophy, and obesity at 6 months of 917 

age (445).  Diet restriction can prevent all these phenotypes except for hyperinsulinemia and 918 

hyper-secretion of insulin after glucose-stimulation (686). Thus, these two phenotypes represent 919 

primary effects of Gpx1 over-production and seem to be mediated by up-regulation of a key 920 

transcription factor (Pdx1) for β cell differentiation and insulin synthesis and secretion, as well as 921 

down-regulation of the insulin secretion inhibitor mitochondrial uncoupling protein 2 (Ucp2). 922 

The insulin resistance in these Gpx1 overexpressing mice may be attributed to less oxidative 923 

inhibition of protein tyrosine phosphatases due to diminished intracellular ROS (H2O2) levels 924 

upon higher Gpx1 activity, leading to accelerated dephosphorylation of IRβ and Akt after insulin 925 

stimulation (445, 686). Meanwhile, Gpx1 overexpression also affects transcripts, proteins, and 926 

functions of other pro-insulin genes, lipogenesis rate-limiting enzyme genes, and key glycolysis 927 

(GK) and gluconeogenesis (PEPCK) enzymes in islets, liver, and muscle (526, 721). FIGURE 928 
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10 highlights the major pathways and modes of action in relation to insulin production and 929 

insulin responses, illustrating how Gpx1 overexpression can induce type 2 diabetes-like 930 

phenotypes. Dietary Se deficiency precludes Gpx1 overproduction in these mice and partially 931 

rescues their metabolic syndromes by modulating or reversing these molecular and biochemical 932 

changes (721). Similarly, dietary Se levels have indeed been shown to affect glucose metabolism 933 

and insulin sensitivity (362). However, β cell-specific overexpression of GPX1 in db/db mice 934 

with mutated leptin receptor rescues β-cell dysfunction with reversed signs of diabetes at 20 935 

weeks of age (229, 244). It should be noted that islets have relatively low baseline Gpx1 activity 936 

but display one of the highest overproductions of Gpx1 activity among all tissues in the global 937 

Gpx1 overexpressing mice. Collectively, it seems clear that GPX1/Gpx1 overproduction is 938 

beneficial at diabetic or obese pathophysiological conditions, but becomes deleterious if 939 

triggered in healthy mice with normal metabolic status.   940 

 941 

5. Intriguing roles of GPX enzymes in carcinogenesis 942 

 943 

A number of studies have revealed cancer type-, stage-, and tissue-dependent impacts of GPX 944 

enzymes on carcinogenesis (FIGURE 11). Global GPX1 overexpression sensitizes mice to skin 945 

tumor formation induced by 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-946 

acetate (DMBA/TPA) (413), whereas adenoviral delivery of GPX1 to pancreatic tumor 947 

xenografts actually suppresses the tumor growth in nude mice (403). While mechanisms for 948 

differential roles of GPX1 between skin and pancreatic tumors remains elusive, a deficiency of 949 

Gpx1 in cancer-free naked mole rats (323) suggests the enzyme to be dispensable for cancer 950 

prevention at least in this particular species. As discussed in Chapter II, chronic colitis (174) and 951 

inflammation-driven intestinal cancer (118) are observed in Gpx1
-/-

Gpx2
-/-

 mice (118, 174), but 952 
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not in Gpx2
-/- 

mice unless additional stress is employed (678). This implies dose-dependent or 953 

overlapping roles of the two Gpx enzymes in this regard.  954 

 955 

Roles of GPX2 in carcinogenesis vary with cellular metabolic contexts (61, 473). In healthy 956 

(normal or precancerous) cells, the enzyme helps maintain self-renewing of the gastrointestinal 957 

epithelium, suppress inflammatory processes, and thereby inhibit carcinogenesis (61). Loss of 958 

Gpx2 induces apoptosis, mitosis, and elevated Gpx1 expression in the intestine of mice (62, 186). 959 

In cancerous cells, however, the anti-apoptosis function of the enzyme may promote their growth 960 

and migration. After being treated with intestinal carcinogens azoxymethane/dextran sulfate, 961 

Gpx2
-/-

 mice fed a selenium-inadequate diet (0.08 mg Se/kg) showed increased tumor numbers 962 

but decreased sizes, compared with the wild-type controls (352). The elevated tumor numbers 963 

may reflect Gpx2-derived protection against carcinogenesis at the early stage of tumor formation, 964 

whereas the declined tumor sizes imply promotion of Gpx2 on tumor growth during the lates 965 

stages of tumorigenesis.  In addition, up-regulation of GPX2 in colorectal cancer (59, 187) and 966 

activation by cancer-associated NRF2 and Wnt pathways (28, 336) further suggest that the 967 

enzyme may indeed be involved in the pathophysiolical processes.  968 

 969 

Several studies have collectively demonstrated both positive and negative impact of GPX3 on 970 

carcinogenesis (62). While knockout of Gpx3 sensitizes mice to chemical-induced, colitis-971 

associated carcinoma (32), knockdown of the gene by shRNA in leukemia stem cells decreased 972 

their competitiveness and self-renewal capability (256). Apparently, most of the findings on the 973 

roles of GPX enzymes in carcinogenesis await full elucidation of the molecular and cell 974 

biological mechanisms.  975 
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 976 

D. Paradoxical effects of TrxR1 targeting by genetic modulation or drug treatment  977 

 978 

 979 

Although TrxR1 is an essential enzyme for mouse embryogenesis, the enzyme can be 980 

conditionally deleted in a wide range of differentiated tissues without apparent phenotype (Table 981 

8, see above) and fully inhibited for at least a week in mice by gold compound treatment without 982 

overt toxicity (615).  Strikingly, genetic deletion or full inhibition of TrxR1 can instead protect 983 

cells and tissues from oxidative challenges. As in the case of global knockout of Sod1, liver-984 

specific Txnrd1
-/-

 mice become highly resistant to APAP-induced hepatotoxicity (302, 520). It 985 

was also found that the TrxR1 enzyme, together with GSH, is a prime target for inhibition by 986 

NAPQI, which should help explain why APAP-derived NADPQI becomes more toxic than what 987 

is seen upon mere GSH depletion using inhibition of GSH synthesis (302, 520). The protective 988 

effects of TrxR1 deletion against APAP challenge are likely to be explained by compensatory 989 

up-regulation of many Nrf2 targets in mice with hepatocytes lacking Txnrd1 with more robust 990 

GSH biosynthesis, glutathionylation, and glucuronidation systems following APAP overdose 991 

(302, 520). Indeed, “priming” of tissues for oxidative injuries by prior inhibition of TrxR1 has 992 

also been shown in lung tissue, where inhibition of the enzyme leads to better resistance to 993 

hyperoxia (63, 405), in most or all of these cases presumed to involve activation of the cell 994 

protective Nrf2 pathway (89). 995 

 996 

Similar paradoxical roles of TrxR1 exist in carcinogenesis. Although liver-specific Txnrd1
-/-

 997 

mice were reported to display a much greater tumor incidence (90 vs 16%) compared with wild-998 

type mice after diethylnitrosamine induction (79), the Trx/TrxR1 system has also been found to 999 
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promote tumor growth (19, 251).  Tumors arising in mice after injection of Txnrd1-knockdown 1000 

Lewis lung carcinoma (LLC1) cells are of much smaller in size than those from mice injected 1001 

with the control, malignant cells; and most importantly, these knockdown LLC1 cells lose their 1002 

targeting construct or show attenuated metastasis (251, 730). The mechanisms by which the 1003 

enzyme can either be cancer preventive or promoting cancer progression are not fully understood, 1004 

but are likely to relate to different stages of carcinogenesis and perhaps also differ between 1005 

cancer types. It is known that over-expression of TrxR1 in cancer cells correlates with 1006 

tumorigenic properties and down-regulation of the enzyme inhibits growth of human 1007 

hepatocarcinoma cells (204). As mentioned above, knockdown of TrxR1 in lung carcinoma cells 1008 

reverses their tumorigenicity and invasive potential in a xenograft model (730). Therefore, 1009 

TrxR1 enzymes have been suggested as potential targets for development of anticancer drugs 1010 

(410, 485, 666). As loss of Txnrd1 renders tumors highly susceptible to pharmacologic GSH 1011 

deprivation, a concomitant inhibition of both GSH and TxrR systems was recently proposed to 1012 

be a strategy to kill tumor cells (245, 430). In this context it should be noted that drug-targeted 1013 

inhibition may not only inhibit TrxR1, but can also convert the enzyme to a pro-oxidant NADPH 1014 

oxidase upon selective modification of its Sec residue (13).  1015 

 1016 

We conclude that TrxR1 can exert “paradoxical” effects in three separate forms of the enzyme, 1017 

i.e. no matter whether it is overexpressed, knocked down or targeted by low molecular weight 1018 

inhibiting compounds, either beneficial or detrimental physiological effects can be triggered 1019 

depending upon cellular context. This is summarized in FIGURE 12 and its diverse effects 1020 

should be considered in studies aimed at understanding the physiological roles of this enzyme.  1021 

 1022 
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2.  E.  Hazard of Trx overexpression and benefit of Grx knockout  1023 

 1024 

Increased Trx1 potentiates cadmium toxicity (218), whereas ablation of Grx1 renders mice 1025 

resistant to the LPS- induced inflammation and macrophage activation associated with enhanced 1026 

S-glutathionylation (4). The latter also enhances resolution of airway hyper-responsiveness and 1027 

mucus metaplasia in allergic mice (270). Because the gene knockout also attenuates 1028 

inflammation and expression of proinflammatory mediators in the lung, S-gluathionylation of 1029 

specific target proteins may be beneficial to attenuate airway hyperrepsonsiveness like in asthma. 1030 

Thus, inhibitors of Grx1 may be of interest clinically.  Plasma Grx1 concentration is increased in 1031 

patients with diabetes (163). This may be linked to defective revascularization in diabetes, since 1032 

Grx1 overexpressing mice have elevated soluble vascular endothelial growth factor receptor 1 1033 

and attenuated post-ischemia limb revascularization (478).  1034 
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IV. MECHANISMS AND METABOLIC RELEVANCE   1035 

 1036 

The apparently paradoxical outcomes in several cases of antioxidant enzyme overexpression or 1037 

genetic deletion studies clearly challenge the “prevailing” view that these enzymes are only 1038 

beneficial, or that ROS/RNS are solely toxic byproducts of aerobic metabolism. It is clear that 1039 

controlled production of ROS/RNS is important in signaling and that under certain conditions, 1040 

antioxidant enzymes exhibit pro-oxidant activities. In all aspects of redox biology, spatial-, 1041 

tissue- and temporal-specific dependences are crucial, which will also have an impact upon the 1042 

physiological functions of antioxidant enzymes (307, 465, 656).  1043 

 1044 

The exact mechanisms for “paradoxical” outcomes of antioxidant enzyme knockout or 1045 

overexpression should undoubtedly derive from the interplay of three factors: 1) the properties 1046 

and roles of their ROS/RNS substrates and products; 2) the activities and functions of the 1047 

antioxidant enzymes and 3) the metabolic contexts in which these entities interact. Accordingly, 1048 

we will here discuss a series of chemical, molecular, biochemical, and physiological mechanisms 1049 

that need to be considered and that may help to explain the observed paradoxical roles of 1050 

antioxidant enzymes. Contributions of reductant substrates such as GSH to the paradox are 1051 

discussed in the context of antioxidant enzyme catalysis.   1052 

  1053 

A. Multi-faced Chemical Reactivity and Metabolic Roles of ROS/RNS 1054 

 1055 

1. Dose-dependent impacts of ROS/RNS  1056 

 1057 
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Whereas excessive levels of ROS and RNS trigger oxidative stress, appropriate levels of 1058 

ROS/RNS are required for redox signaling. Apparently, antioxidant enzymes are needed to 1059 

suppress excessive production of ROS and RNS. Under certain conditions, however, insufficient 1060 

ROS/RNS or elevated cellular reductants can be detrimental, or, conversely, elevated ROS/RNS 1061 

may be beneficial. This explains in part dose-dependent effects of ROS/RNS or roles of their 1062 

metabolizing enzymes. Transgenic mice with 2- to 3-fold increased Sod2 activity in major 1063 

organs are phenotypically normal and fertile (542), while a higher overexpression of the enzyme 1064 

to 2.5- to 8.7-fold activity above normal decreases body size and female fertility, and causes 1065 

male infertility. Transgenic lines overexpressing 60- or 100-fold catalase activity are more 1066 

resistant to doxorubicin-induced cardiac injury, but further overexpression to 200-fold or higher 1067 

fails to provide protection (319). While the precise molecular explanations to these observations 1068 

are unknown, they likely involve effects of site-specific localization, reactivity, steady-state 1069 

levels of H2O2, as well as differential induction of compensatory pathways, as discussed below.  1070 

 1071 

2. Detrimental effects of insufficient peroxides on redox signaling 1072 

 1073 

Of the primary ROS, H2O2 is perhaps the most important for signaling (560), with both O2
-
 and 1074 

hydroxyl radicals having limited half-life and reactivity profiles unsuitable for diffusible signals 1075 

(135, 192, 193). H2O2 is an ideal signaling agent because of its relatively long lifetime and 1076 

selectivity for targeting of particular protein microenvironments (135, 181, 192, 193, 700). It can 1077 

oxidize thiol groups of specific Cys residues to disulfides (S-S), sulfenic (S-OH), sulfinic (SO2H), 1078 

and sulfonic (SO3H) acids (404). Over-oxidation to sulfonic acid is not implicated in redox 1079 

signaling, but contributes to oxidative stress due to its irreversibility. Peroxide sensing proteins 1080 
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that utilize uniquely reactive Cys residues may include transcriptional factors (20, 487), kinases 1081 

(651), phosphatases (451), ion channels (521), ubiquitin and small ubiquitin-related modifier 1082 

(SUMO)-conjugating enzymes, ligases and adapter proteins (55, 157, 450, 743), as well as 1083 

various metabolic enzymes (466).  Most likely of all proteins to react with H2O2 are however 1084 

peroxidases, such as GPXs or PRXs, which in turn may propagate the oxidative signal to specific 1085 

downstream targets in cells (698, 699).  1086 

 1087 

Many signal transduction pathways are hard-wired to redox signaling networks, due to the large 1088 

number of kinases and phosphatases having reactive Cys residues that affect their activities (70, 1089 

192, 193, 673). Deliberately-produced peroxides can oxidize catalytic Cys residues in various 1090 

protein tyrosine phosphatases (PTPs), thereby inactivating them (34, 146, 577, 650, 670). This in 1091 

turn serves to enhance activation of related signaling pathways by preventing the PTPs-catalyzed 1092 

de-phosphorylation of specific phosphorylated tyrosine residues. Apparently, this type of 1093 

inhibition can be removed by a hyperactivity of peroxide-scavenging enzymes. As in the case of 1094 

Gpx1-overexpressing mice that develop type 2 diabetes-like phenotypes (445, 686), the over-1095 

produced Gpx1 diminishes intracellular ROS production, reverts the inhibition of PTPs, 1096 

accelerates dephosphorylation of IR and Akt after insulin stimulation, and thereby leads to 1097 

insulin resistance. In contrast, knockout of Gpx1 causes accumulation of intracellular peroxide, 1098 

which, via the same pathways, improves insulin sensitivity and renders the mice more resistant to 1099 

high-diet induced insulin resistance (406, 684). However, the specific dose, temporal dynamics, 1100 

and targeting protein phosphatases for the action of H2O2 in redox signaling remain largely 1101 

unclear. 1102 

 1103 



51 
 

3. Mixed effects of peroxynitrite in cell signaling  1104 

 1105 

Peroxynitrite-mediated signaling pathways are not as firmly established as those involving H2O2. 1106 

Traditional “antioxidant” ROS-scavenging enzymes like SOD1 and GPXs have been implicated 1107 

in peroxynitrite metabolism and are supposed to affect the related signaling pathways. 1108 

Peroxynitrite can upregulate Src tyrosine kinases, the Akt pathway, and various mitogen-1109 

activated kinases (512). Because many mitogen-activated kinases like p38 and c-Jun are 1110 

implicated in pro-apoptotic pathways, peroxynitrite is considered to be a pro-death signaling 1111 

molecule. In addition, peroxynitrite has also been implicated in hypoxic signaling. Under 1112 

hypoxia, cytochrome c oxidase exhibits nitrite reductase activity, reducing nitrite to nitric oxide 1113 

instead of oxygen to water (85, 86). This nitric oxide then reacts with O2
-
 to form peroxynitrite, 1114 

which can oxidize yet to be determined protein targets that signal adaptation to hypoxia (158, 1115 

534). As discussed in greater detail below, SOD1 can either increase or decrease peroxynitrite 1116 

via its ability to control O2
-
 fluxes. Thus, paradoxical outcomes of Sod1 knockout or SOD1 1117 

overexpression may be in part derived from the unpredictable consequences of peroxynitrite 1118 

modulation (298, 512, 758). The same may also be true for the case of GPX1 (197-199) but the 1119 

precise roles and mechanisms of SOD1 and GPX1 in regulating peroxynitrite-mediated signaling 1120 

are unclear.  1121 

 1122 

B.  Paradox-related Properties of Antioxidant Enzymes 1123 

 1124 

1. Pro-oxidant catalysis  1125 

 1126 
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Despite their well-known ROS/RNS scavenging capacity, some antioxidant enzymes may also 1127 

promote oxidative/nitrosative stress. One example is the conversion of TrxR1 to a prooxidant 1128 

enzyme upon targeting of its Sec residue by inhibitors, as discussed above. Another illustrative 1129 

example relates to the peroxidase activity exhibited by SOD1 (398, 399, 551, 745). The 1130 

peroxidase cycle of SOD1 involves peroxide reducing the Cu(II) center to form O2
-
 radical and 1131 

Cu(I), followed by another molecule of peroxide re-oxidizing Cu(I) to form Cu(II) and hydroxyl 1132 

radical. These reactions can occur under severe peroxide stress, with the resulting hydroxyl 1133 

radicals subsequently being able to irreversibly oxidize metal coordinating His residues and 1134 

thereby inactivate SOD1 (728). In the presence of carbonate, hydroxyl radicals can also oxidize 1135 

carbonate to form carbonate radicals, which can in turn oxidize a variety of other substrates, 1136 

including azide, urate, and nitrite (448, 745). However, it remains unclear to which extent this 1137 

chemistry happens in vivo, but how much this contributes to the SOD1 toxicity. 1138 

 1139 

In some circumstances, SOD1 can also promote aberrant protein nitration, either by enhancing 1140 

peroxynitrite production or by directly activating it for tyrosine nitration. Beckman and 1141 

colleagues demonstrated that human SOD1 mutants that are zinc deficient, either due to 1142 

mutations associated with ALS or by other interventions that limit zinc to the protein, are better 1143 

at catalyzing the reduction of dioxygen to O2
-
, thus providing a pool of O2

-
 that can react with 1144 

nitric oxide to form peroxynitrite (173, 655). This peroxynitrite can then go on to nitrosylate and 1145 

irreversibly damage various biomolecules, serving as another mechanistic basis for a toxic gain 1146 

of function associated with various ALS-associated the mutants of SOD1.  1147 

 1148 
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Beckman and Koppenol have also proposed that intact human SOD1 can activate peroxynitrite to 1149 

nitrosylate protein tyrosine residues (38, 39). The mechanism would involve Cu(II)-catalyzed 1150 

heterolytic cleavage of peroxynitrite into the nitronium cation and CuO, with the former being a 1151 

potent nitrosylating agent. Indeed, Lei and co-workers demonstrated that there is a diminished or 1152 

blocked protein nitration in Sod1
-/-

 mice treated with APAP (379). They proposed that the block 1153 

of hepatic protein nitration in those mice might partially explain their resistance to the APAP 1154 

overdose. Adding functional holo-SOD1, but not apo-SOD1, to liver homogenates of the Sod1
-/-

 1155 

mice mixed with a bolus of peroxynitrite indeed resulted in increased protein nitration (758). 1156 

 1157 

Likewise, GPX1 bears pro-oxidant potential. Several groups have demonstrated that this enzyme 1158 

can aggravate nitrosative stress in mouse models (199, 343, 376, 377, 379, 458). This effect 1159 

opposes the role of GPX1 in preventing nitrosative stress by catalyzing reduction of peroxynitrite 1160 

into nitrite using reducing equivalents from GSH (610). Although the precise mechanisms 1161 

remain poorly understood (191, 197), attenuated protein nitration should help explain the 1162 

increased resistance of Gpx1
-/-

 hepatocytes to peroxynitrate toxicity and lack of potentiation or 1163 

even protection conferred by Gpx1 knockout against APAP hepatotoxicity (199, 343, 376, 377, 1164 

379, 458).    1165 

 1166 

2. “Unwanted” modulation of reducing equivalents  1167 

 1168 

Excessive enzymatic removal of ROS/RNS may lead to other detrimental downstream effects. 1169 

For example, consumption of GSH as a reductant substrate deplete cells of GSH and thus 1170 

outweigh the benefits of GSH-dependent ROS scavenging enzymes (199, 379, 458). Although 1171 
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un-catalyzed reduction of peroxide by GSH is slow
 
(700), GPX1 is very efficient at catalyzing 1172 

this reaction (235). However, GSH can directly scavenge other more reactive species, like 1173 

hydroxyl radicals, HOCl, peroxynitrite, and carbonate radicals (235). It can also regenerate 1174 

antioxidants vitamins C and E. This may partially explains why overproduction of GPX1/Gpx1 1175 

can result in greater sensitivity to the destructive reactivity of APAP metabolites (199, 379, 458). 1176 

  1177 

Meanwhile, elevating GSH may also be detrimental via mechanisms that involve S-1178 

glutathionylation and inactivation of various key proteins. For instance, GAPDH (462), eNOS 1179 

(96, 431), certain tyrosine phosphatases (1), MAPK phosphatase 1 (331), mitochondrial 1180 

thymidine kinase 2 (630), and protein disulfide isomerase (715) have all been reported to be 1181 

inactivated by glutathionylation. This may either protect such enzymes from further damage, but 1182 

can inhibits their function. While the precise pathways and mechanisms are yet unclear, NRF2 is 1183 

emerging as a major regulator of oxidative and reductive extreme conditions in metabolism (57, 1184 

321). Upon a rise of ROS levels above normal, NRF2 helps to up-regulate GSH synthase and 1185 

GSSG reductase, G6PD of the pentose phosphate pathway, as well as antioxidant enzymes like 1186 

TrxR1, SOD and catalases. While initially activated to protect against oxidative stress, 1187 

hyperactivity of NRF2 can however result in a shift towards reductive stress, due to over-1188 

abundance of anti-oxidant factors and GSH that can lead to cardiomyopathy and hypertrophy 1189 

(543). It is possible that the detrimental effects of reductive stress can be associated with elevated 1190 

S-glutathionylation (227) and/or inappropriate suppression of critical ROS-dependent signaling 1191 

pathways. The effects of antioxidant enzyme overexpression in this context remain to be better 1192 

characterized. 1193 

 1194 
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3. Stress source and intensity-dependent roles  1195 

  1196 

As ROS scavengers, both Gpx1 and Sod1 protect mice against the lethality and toxicity caused 1197 

by ROS-generating diquat and paraquat (111, 113, 168, 199). However, the opposite is true when 1198 

mice are treated with the RNS-generating APAP and kainic acids (309, 379). Indeed, the 1199 

ultimate metabolic outcome from overexpression or knockout of a particular antioxidant enzyme 1200 

should be decided by how the enzyme will alter the relative production and fate of ROS and 1201 

RNS in a given context. Good examples are the impacts of SOD overproduction on 1202 

cardiovascular diseases or myocardial ischemic injuries. First, elevated SOD may help to 1203 

preserve NO bioavailability, by preventing its reaction with O2
-
 to form peroxynitrite, and thus 1204 

allow NO to serve as a vessel relaxation factor to protect the cardiac function and survival (83, 1205 

493). On the other hand, the hyperactivity of SOD may promote formation of H2O2 which then 1206 

triggers downstream signaling responses that may inhibit vascular pathogenesis (747). However, 1207 

the role of vascular H2O2 can also depend upon the location, as exemplified with H2O2 derived 1208 

from overproduced SOD3 anchored to endothelial cells, which promotes VEGFR2 signaling and 1209 

then potentially aggravates angiogenesis-dependent vascular diseases (508). 1210 

 1211 

Knockouts of Txnrd1, Gpx1 and Sod1 produce different phenotypes of glucose and lipid 1212 

metabolism in mice (302, 680, 684). While the knockout of Sod1 elevates endogenously-derived 1213 

intracellular O2
-
, the mice display similar impairments in islet physiology, but distinct signaling 1214 

mechanism compared with the Gpx1
-/-

 mice with elevated intracellular peroxides. As shown in 1215 

FIGURE 7, Sod1 knockout down-regulates Pdx1 at three levels: epigenetic, gene, and protein, 1216 

whereas the Gpx1 knockout affects only the Pdx1 protein. Interestingly, both knockouts suppress 1217 
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GSIS by elevating Ucp2 expression with decreased ATP production and affecting the 1218 

mitochondrial potential in islets (684). Interestingly, only the GPX mimic ebselen, but not the 1219 

SOD mimic copper diisopropylsalicylate (CuDIPs), rescues impaired GSIS in islets of all test 1220 

genotypes including Gpx1
-/-

 and Sod1
-/- 

(684). The effects of ebselen seemed to be mediated via 1221 

peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) while, in 1222 

contrast, CuDIPs improves insulin secretion only in Sod1
-/-

 islets with suppressed gene 1223 

expression of the PGC-1α pathway (685). These results demonstrate that Gpx1 and Sod1, via 1224 

their respective ability to modulate different species of ROS, can differentially affect redox-1225 

sensitive pathways in regulating GSIS. However, the “sensor” in the target signal molecules or 1226 

regulators that distinguish and react with the local changes of O2
-
 and peroxide needs unveiling.    1227 

 1228 

Even for the same oxidative insult, the necessity and mechanism of a given antioxidant enzyme 1229 

will vary with stress intensity and antioxidant status. When mice are injected with a high dose of 1230 

paraquat (50 mg/kg body weight) or diquat (24 mg/kg), Gpx1 becomes absolutely essential to 1231 

promote mouse survival by protecting against the depletion of NADPH and redox collapse (113, 1232 

195). In contrast, Gpx1
-/-

 mice tolerate low doses of paraquat (12.5 mg/kg) and diquat (6 mg/kg) 1233 

well if they are fed adequate selenium to saturate the expression of other selenoproteins (111, 1234 

196). Still, minute amounts of Gpx1 activity, raised by injection of selenium in selenium-1235 

deficient mice, becomes protective against a moderate dose of paraquat-induced hepatic necrosis 1236 

and apoptosis (112). Comparatively, knockout of Sod1 in the mice enhances sensitivity to 1237 

oxidative injury induced by a similar dose of paraquat (10 mg/kg) (264), implicating that 1238 

generation of O2
-
 contributes more to the paraquat-induced oxidative toxicity. 1239 

 1240 
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4. Compensatory inductions  1241 

 1242 

“Hidden helpers” or compensatory responses induced by altering the expression of antioxidant 1243 

enzymes may also help to explain the mechanisms of the observed phenotypes. The protection 1244 

conferred by the Sod1 knockout against the APAP toxicity is associated with a 50% activity 1245 

reduction in a key APAP-biotransforming enzyme, CYP2E1 (379), which catalyzes the 1246 

formation of toxic metabolites of APAP. The Sod1 knockout also results in a 40% reduction of 1247 

GPX1 activity (684), which may also add to the resistance of the Sod1
-/-

 mice to the drug 1248 

overdose (756).  1249 

 1250 

As elaborated above, NRF2 is a redox-sensitive transcription factor that controls protective 1251 

responses to oxidative stress (419, 463). The protein is normally sequestered in the cytosol by 1252 

Keap1 and marked for proteasomal degradation. Under oxidative stress, Keap1 becomes 1253 

oxidized and NRF2 can then translocate to the nucleus where it initiates transcription of selected 1254 

antioxidant enzyme genes (419, 496). In the Sod1
-/-

 mice, a greater fraction of Nrf2 is localized 1255 

in the nucleus and up-regulates gene expression of many antioxidant proteins including 1256 

glutathione S-transferases, sulfiredoxins, TrxR1, GSH synthases and other reductases (239). The 1257 

up-regulation of these enzymes provides an increased antioxidant capacity in Sod1
-/-

 mice against 1258 

the APAP-derived oxidative stress. Likewise, the liver specific knockout of Txnrd1 enhances 1259 

mouse resistance to the APAP toxicity by up-regulation of the Nrf2-target genes and proteins, 1260 

with more robust GSH biosynthesis, glutathionylation, and glucuronidation systems (302, 520). 1261 

The increased resistance to acute lung injury induced by endotoxin in acatalasemic mice (759) 1262 

results from the H2O2-mediated down-regulation of cytokine expression in macrophages via 1263 
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inhibition of NFκB activation.  With these compensatory mechanisms revealing intricate 1264 

pathways of physiological coordination to cope with redox imbalances, caution should be given 1265 

to evaluate functions of antioxidant enzymes as absolute or isolated entities, as they will always 1266 

be context-dependent.  1267 

 1268 

5. Overlapping and coordinated functions  1269 

 1270 

Catalase and GPX1 are two major antioxidant enzymes that are both responsible for removal of 1271 

H2O2 although via distinct mechanisms (94, 184).  Double-knockout mice deficient in both of 1272 

these enzymes were generated to reveal insights into the overlap between these potentially 1273 

redundant H2O2-detoxification systems (333).  Interestingly, hepatic lipid peroxidation is not 1274 

elevated in mice deficient in Gpx1 alone compared with that of wild-type mice (113), yet it is 1275 

increased in mice lacking both Gpx1 and catalase (333).   1276 

 1277 

In other cases, intrinsic expression of multiple isoforms of the same antioxidant enzymes in cells 1278 

makes interpretations of oxidant-mediated diseases difficult. GPX1 is ubiquitous in all types of 1279 

cells and GPX2 is in epithelium of the gastrointestinal tract (60, 117, 177).  Gpx1
-/-

 and Gpx2
-/-

 1280 

mice are grossly normal.  However, Gpx1
-/-

Gpx2
-/-

 mice develop spontaneous ileocolitis and 1281 

intestinal cancer (118, 174, 175).  This occurrence of cancer is also associated with an increased 1282 

rate of mutation in the intestine (372).  Collectively, these results suggest that the two enzymes 1283 

cooperatively attenuate intestinal flora-induced inflammation by removing H2O2 and alkyl 1284 

hydroperoxides, thereby suppressing the vicious cycles of the inflammatory response and 1285 

oxidant-mediated mutations and cancer. 1286 



59 
 

 1287 

Over-production of either SOD2 or Cat , each having its distinct target of ROS, in pancreatic β 1288 

cells of mice significantly delays but does not prevent the onset of diabetes induced by STZ 1289 

compared with wild-type mice (99).  However, the STZ-triggered increase in blood glucose is 1290 

more effectively attenuated by overexpression of both enzymes in mice, suggesting that both O2
-
 1291 

and H2O2 contribute to the dysfunction and death of pancreatic β cells caused by STZ.  In 1292 

contrast, double knockouts of Sod1 and Gpx1 did not produce more aggravated effects than the 1293 

single knockout of Sod1 on mouse susceptibility to pro-oxidant toxicity, loss of islet beta cell 1294 

mass and insulin synthesis, and dysregulation of glucose metabolism (376, 684, 758).  Thus, 1295 

overlapping or coordination between antioxidant enzymes is not a universal feature. 1296 

 1297 

Double knockouts of antioxidant enzymes can also yield unexpected novel insights into 1298 

mammalian redox control. This was recently exemplified when Txnrd1 was conditionally deleted 1299 

from hepatocytes in mice lacking a functional Gsr gene, thus leading to livers lacking both of the 1300 

two major cytosolic NADPH dependent oxidoreductases TrxR1 and GR, presumed to be 1301 

required for essentially all NADPH dependent reductive activities in the cytosol. These mice 1302 

were, surprisingly, found to be both viable and fertile. The reductive power was instead supplied 1303 

solely by dietary methionine that became converted to GSH, which was likely used in single-1304 

turnover reactions and thus these livers avoid the reliance on NADPH (171).  1305 

 1306 

6. Non-redox functions  1307 

 1308 
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SOD1 has been shown to play roles in copper and zinc metabolism (132, 690, 709). In Baker’s 1309 

yeast, overexpression or deletion of SOD1 affects the cell resistance or sensitivity to copper and 1310 

zinc toxicity or deprivation, respectively (132, 709). More recent work suggests that SOD1 is 1311 

also important for communicating the cellular stress response to low zinc (278, 709). Most 1312 

interestingly, a group have demonstrated (656) a role for SOD1 in cell signaling independent of 1313 

its role in O2
-
 disproportionation. They found that under oxidative stress, SOD1 translocated to 1314 

the nucleus where it acted as a transcriptional activator of genes involved in oxidative resistance 1315 

and repairing.  Indeed, yeast cells expressing an allele of SOD1 that cannot get into the nucleus 1316 

are more sensitive to oxidative stress. SOD1 represents ~1% of total cellular protein (~10-50 1317 

µM), and less than 1% of total SOD1 enzyme may be needed to protect against various oxidative 1318 

insults (127, 557). Thus, the recently-discovered novel functions of SOD1, besides O2
-
 1319 

scavenging, help explain its high cellular abundance and perhaps its paradoxical roles. 1320 

 1321 

Another antioxidant enzyme that exhibits non-redox functions is PRX1 (307). The enzyme forms 1322 

oligomeric species that exhibit chaperonin activity upon oxidation of certain Cys to sulfinic acid. 1323 

Such a mechanism enables the PRX family enzymes, which are better at scavenging low 1324 

concentrations of peroxide, to be converted to chaperones to ensure proper protein folding under 1325 

severe oxidative stress and high peroxide fluxes (409, 560, 705). Undoubtedly, the discovery of 1326 

SOD1 as a novel transcriptional factor and PRX1 as a chaperone offers a new direction to 1327 

elucidate the underlying mechanism for paradoxical roles of antioxidant enzymes.  Additional 1328 

non-redox functions of antioxidant enzymes include the role of Gpx4 as a structural protein in 1329 

sperm mentioned above, or the cytokine-like properties of extracellular Trx1 or Trx80. It is 1330 

possible, perhaps even likely, that additional non-redox related functions of classically 1331 
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considered antioxidant enzymes will be discovered, which should help in interpreting the 1332 

phenotypes seen upon their genetic deletion or overexpression. 1333 

 1334 

C. Metabolic Context and Reaction Environment Affecting Roles of Antioxidant Enzymes 1335 

 1336 

1. Physiological vs. pathophysiological conditions 1337 

  1338 

Antioxidant enzymes may exert different impact in physiological compared to pathological 1339 

processes. While overexpressing Gpx1 induces type 2 diabetes-like phenotypes in mice without 1340 

diabetic or obese-prone genetic background (445), the β cell-specific overexpression of GPX1 in 1341 

ob/ob mice actually, in stark contrast, reverses hyperglycemia and improves β-cell volume and 1342 

granulation (244). Similarly, knockout of Gpx1 impairs insulin synthesis and secretion in mice 1343 

fed the normal diet (684), but enhances mouse resistance to a high-fat diet-induced insulin 1344 

resistance (406). Therefore, roles of antioxidant enzymes under “normal” and “diseased” 1345 

conditions should not be extrapolated or inferred from each other.   1346 

  1347 

2. Temporal dependence of physiological effects 1348 

 1349 

Short-term benefits of antioxidant enzyme alterations may lead to long-term harms, and vice 1350 

versa. Indeed, overexpression of Gpx1 alone or in combination with SOD1 and SOD3 protects 1351 

mouse islets from oxidative injury and improves islet graft function (480). However, the long-1352 

term over-production of Gpx1 results in hyperinsulinemia, insulin resistance, and obesity (684). 1353 

In contrast, knockout of Sod1 offers extra resistance to APAP overdose and insulin sensitivity in 1354 
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the young adult mice (379, 684), but leads to hepatocarcinogenesis in later life (167). When the 1355 

hippocampal long-term potentiation (LTP), one of the major cellular mechanisms for learning 1356 

and memory ability, is impaired in young (2-months old) SOD1 overexpressing mice (201), the 1357 

aged (2-years old) transgenic mice actually exhibit an enlarged LTP (316) and consequently a 1358 

better performance in spatial memory (315) compared with the wild-type mice. These 1359 

differences implied a strong age-dependence for the effects of the Sod1 deficiency and/or Sod1-1360 

derived peroxide based on the brain function.  1361 

 1362 

3. Subcellular location-dependence effects  1363 

 1364 

Sub-cellular localizations of particular antioxidant enzymes have profound effects on their roles, 1365 

which need to be considered in interpretations of the mechanistic results. Overexpressing 1366 

extracellular GPX3 protects mice from the APAP toxicity, while the overexpression of 1367 

intracellular GPX1 sensitizes mice to the toxicity (458). Likewise, the β-cell specific 1368 

overexpression of cytoplasmic Cat and the metallothionein gene, but not the mitochondrial Sod2, 1369 

accelerates the cyclophosphamide-induced and spontaneously-developed diabetes in the non-1370 

obese diabetic male mice (390). Overexpression of CAT in mitochondria, but not in the 1371 

peroxisomes or nuclei, extends the median and maximal lifespan of the mice by 20% (584).  This 1372 

indicates that the interactions between ROS/RNS and their metabolizing enzymes should not be 1373 

extrapolated from different subcellular compartments.  1374 

 1375 

Likewise, peroxide-derived from the yeast SOD1 protein that is proximal to a membrane bound 1376 

casein kinase is required to regulate energy metabolism in response to oxygen and glucose 1377 
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availability (557). The yeast SOD1 protein that is not targeted to the cytosol, or other SOD 1378 

isoforms that are targeted to the cytosol like mitochondrial SOD2 or Candida Albicans SOD3 are 1379 

unable to regulate casein kinase signaling. Similarly, a small fraction of cytosolic PRX1 and 1380 

PRX2 is associated with lipid rafts proximal to NADPH oxidase enzymes. Only the lipid raft 1381 

associated PRX1, but not cytosolic PRX1, is found to be phosphorylated at Tyr194 by a protein 1382 

tyrosine kinase (PTK) of the Src family when cells are stimulated by growth factors (705). 1383 

Phosphorylation of PRX1 near membranes has the effect of inactivating the enzyme, which 1384 

promotes peroxide-mediated signals to propagate. 1385 

 1386 

4. Cell-compartmentalization and tissue heterogeneity of transgenes   1387 

 1388 

Different types of cell may not respond the same toward similar changes of antioxidant enzymes.   1389 

While the cardiac-specific overexpression of CAT/Cat generates many benefits for prolonging 1390 

lifespan and protecting against cardiac injuries (208, 317, 660, 712, 748, 749), the same specific 1391 

overexpression in the endothelium shows little protection against myocardial or vascular 1392 

ischemia/reperfusion injury (704). In either tissue-specific overexpression of a given antioxidant 1393 

enzyme, such as catalase in cardiomyocytes and pancreatic β cells (319, 717), or ubiquitous 1394 

overexpression of an antioxidant enzyme in mice, the intended overexpression may be very 1395 

heterogeneous in different types of cells within an organ. Likewise, extents of a global 1396 

overexpression of a transgene in mouse tissues may be restricted to certain organs, but not as 1397 

widely spread as the corresponding endogenous mouse genes or the genes whose promoters are 1398 

used in the transgene constructs (such as the human β-actin promoter) (266, 494, 509, 716, 727).   1399 
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The heterogeneity of transgene expression cannot be appropriately assessed when homogenate of 1400 

the entire organ is used for expression study. To circumvent this problem, large genomic 1401 

fragments containing the genes of interest have been used to overexpress SOD1 and CAT (103).  1402 

However, whether the specificity of transgene expression can also be applied to each individual 1403 

type of cells within each organ is still an open question.  1404 

 1405 

Heterogeneity of transgene expression is also shown even in mice carrying an identical transgene. 1406 

For example, the same 14.5-kb genomic fragment containing the entire human SOD1 gene has 1407 

been used independently by several laboratories to generate transgenic mice (87, 170, 231, 681).  1408 

Although the SOD1 overexpression protects heart against an in vitro model of 1409 

ischemia/reperfusion in two independent lines of transgenic mice, the cell specificity of 1410 

overexpression in these mice is quite different. The gene is overexpressed in both endothelial 1411 

cells and cardiomyocytes in one line of transgenic mice (681), but exclusively in coronary 1412 

vascular cells including endothelial cells and smooth muscle cells but not cardiomyocytes in 1413 

another line (106). Therefore, immune-histochemical studies are needed to identify the types of 1414 

cells expressing the transgene in the target organs, and more than one line of transgenic mice 1415 

carrying the same transgene should be employed in physiological studies to ensure 1416 

reproducibility of the experiments.  The latter approach is even more critical when homozygous 1417 

transgenic mice are used in the experiments, because the transgene occasionally disrupts the 1418 

expression of a normal mouse gene at the site of integration by the mechanism referred to as 1419 

“insertional mutagenesis,” leading to a phenotype that is unrelated to the expression of the 1420 

transgene (708).  As a given antioxidant enzyme may not be sufficiently overexpressed in 1421 
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targeted cells within an organ that are vulnerable to a particular oxidant-mediated injury, a 1422 

negative result does not rule out the enzyme function in defense against the injury in those cells.  1423 

 1424 

Furthermore, the tissue heterogeneity of the transgene expression may also affect human 1425 

implications of findings from a particular animal model.  Noteworthy, SOD3 in human aorta 1426 

accounts for approximately 50% of the total SOD activity, whereas the enzyme in rat aorta 1427 

represents only 5% of the total SOD activity due to a key amino acid difference that affects 1428 

tissue binding in vessels (178, 619). As a result, the rat essentially lacks vascular SOD3 and, 1429 

consequently, the observed protection of SOD3 against vascular diseases in rat models may be 1430 

easily over-interpreted. 1431 

 1432 

5. Genetic background of mouse models 1433 

 1434 

Most transgenic and knockout mice are initially generated in a mixed genetic background (272, 1435 

515) and it will take 10 to 12 generations of backcrossing to become congenic.  Because this 1436 

crossing may take several years, most of the phenotypic studies, at least initially, are performed 1437 

on mice in a mixed genetic background.  Such studies should be interpreted with caution, since 1438 

the genetic background of the mice may contribute to the observed phenotypes. For example, 1439 

strain C57BL/6J (B6) mice are more susceptible to hyperoxia-induced lung injury than C3H/HeJ 1440 

(C3) mice (287). Further studies using linkage analysis have shown that the B6 mice carry a 1441 

nucleotide substitution in the promoter region of the Nrf2 gene (116). This Nrf2 polymorphism 1442 

co-segregates with the susceptible phenotype of B6 mice to hyperoxia. Therefore, when SOD2 1443 

transgenic mice in a B6 X C3 mixed genetic background are used for study of hyperoxia-induced 1444 
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lung injury, tolerance to exposure is determined by both the origin of the Nrf2 allele and 1445 

expression of the SOD2 transgene (266). Therefore, control experiments should be conducted for 1446 

functional studies in mice with the identical genetic background, preferably littermates of the 1447 

experimental mice. 1448 

 1449 

6. Heterozygous mouse models and human relevance 1450 

 1451 

To date, most of the phenotypic studies have been performed using homozygous knockout mice 1452 

(if viable) in comparison with wild-type mice. However, studies using heterozygous mice with a 1453 

partial deficiency may be more relevant to human diseases, since humans being fully devoid of a 1454 

protein or enzyme are very rare. Although relatively limited studies have documented the 1455 

phenotypes of such mice that express approximately a half of the normal amount of enzyme, 1456 

some results are very intriguing. For example, under normal physiological conditions, the time to 1457 

development of malignant tumors in Prx1
+/-

 mice is between those of Prx1
-/-

 and wild-type mice. 1458 

In addition, hemolytic anemia was first observed in the Prx1
+/-

 mice at 12 months of age 1459 

compared with 9 months of the null mice, whereas wild-type mice are free of this disease (484). 1460 

Therefore, a partial deficiency in Prx1 results in phenotypes being intermediate between 1461 

complete deficiency and normal in mice.  On the contrary, while Sod1
-/- 

females show a declined 1462 

fertility (489), the fertility of the Sod1
+/-

 females are normal (264, 443). In response to trauma-1463 

induced dysfunction of mitochondrial respiration in brain, Cat
+/-

 mice are as vulnerable as Cat
-/-

 1464 

mice (268). In contrast, the phenotype of Sod1
+/-

 mice resembles that of wild-type mice in 1465 

response to acute paraquat toxicity (10 mg/kg body weight) (264). Therefore, the effect of a 1466 

partial deficiency in antioxidant enzyme on untreated mice and oxidant-mediated disease models 1467 
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varies from gene to gene. While future research on the physiological role of antioxidant enzymes 1468 

should consider more partial knockdown or knockout models, current findings from the 1469 

homozygous knockout mouse models need to be verified in human studies.  1470 

 1471 

In summary, we have postulated a series of mechanisms in this chapter that should underpin the 1472 

“paradoxical” outcomes of antioxidant enzyme deletion or overexpression. FIGURE 13 1473 

highlights the central concept that effects of antioxidant enzyme modulation arise from a 1474 

complex interplay between the activities of the antioxidant enzymes with their ROS/RNS 1475 

substrates (and reductants such as GSH), as well as the importance of the environmental context 1476 

in which they operate. It is our hope that this figure, along with our deliberations, prompt readers 1477 

to recognize that the mechanisms by which nature masterfully orchestrates these seemingly 1478 

paradoxical events are evolved to maintain redox homeostasis, and are critical towards 1479 

understanding both health and disease.    1480 
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V. HEALTH AND NUTRITION IMPLICATIONS  1481 

 1482 

A.  Antioxidant Enzymes in relation to Human Diseases    1483 

 1484 

Catalase-deficient patients, classified as acatalasemic or hypocatalasemic, are found in many 1485 

countries (495).  These patients can have different alterations of the catalase gene including 1486 

substitution (692, 693), deletion (262), and insertion (222, 225).  Being apparently healthy, 1487 

patients with acatalasemia may display increased risks of a progressive oral gangrene (166, 637, 1488 

638) and type 2 diabetes mellitus, especially in females (223).  Still, the rather common 1489 

occurrence of this autosomal recessive disease and its mild symptomatology suggests that 1490 

catalase has mainly redundant activities with regards to human H2O2 removal pathways.  1491 

   1492 

Two well-known neurodegenerative diseases: familial ALS and Down’s syndrome, exemplify 1493 

the significant health implications of antioxidant enzymes in a “paradoxical” manner. While 1494 

dominantly-inherited mutations of SOD1 gene account for 20% of the familial ALS cases (569), 1495 

the pathophysiology seems to be due to a gain of mutant protein toxicity independent of the 1496 

normal enzymatic activity of SOD1. Several lines of transgenic mice expressing Sod1 mutants 1497 

have indeed displayed pathological characteristics reminiscent of those seen in ALS (67). The 1498 

Down’s syndrome patients usually display a 50% increase in SOD activity (14, 131, 612). 1499 

Although transgenic mouse models have been developed for this disease (23, 24, 524, 580), the 1500 

underlying mechanisms of SOD1 toxicity in Down’s syndrome are not understood (143, 366). In 1501 

addition, mutations of SOD2 in humans are associated with idiopathic cardiomyopathy, sporadic 1502 

motor neuron defect and cancer (261). However, Sod2
-/-

 mice generated by targeted disruption 1503 
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only partially recapitulate these human symptoms; rather, these mice display metabolic 1504 

phenotypes including fatty liver and cardiomyopathy (388). Indeed, polymorphisms of SOD 1505 

enzymes, catalase and GPX1 have been implicated in association with a number of human 1506 

metabolic disorders such as diabetes and cardiovascular diseases, as well as cancers [reviewed in 1507 

(130, 253)] 1508 

 1509 

Altered nutritional selenium intake has long been implied in several diseases that are believed to 1510 

be explained mainly by aberrant selenoprotein functions (554). The first examples of genetically 1511 

and molecularly defined diseases of insufficient selenoprotein synthesis were found to relate to 1512 

mutations in the selenium-binding protein-2 involved in translational insertion of Sec into 1513 

selenoprotein and leading to complex diseases with hypothyroidism as a main symptom (25, 150, 1514 

582). These patients are however only partially deficient in selenoproteins and considering that 1515 

deletion of Trsp and some of the selenoproteins in mice is embryonically lethal (see above) it is 1516 

unlikely that patients would survive with a total lack of selenoprotein synthesis, but additional 1517 

polymorphisms and other aberrations in specific selenoproteins are likely to be discovered in 1518 

relation to disease.  1519 

 1520 

Among the genetic variants of GPX enzymes, GPX1Pro198Leu polymorphism is the most 1521 

studied case. In a small randomized trial with 37 morbidly obese women (BMI > 45), this variant 1522 

precluded the protection against DNA breaks by daily supplementation of one Brazil nut daily 1523 

(290 µg Se/day) for 8 weeks (121). Furthermore, the same variation is associated with decreased 1524 

selenium status in Alzheimer’s patients (75), lowered GPX activity and increased breast cancer 1525 

risk in Danish women (553), predisposition to colorectal adenomas or carcinomas based on the 1526 
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Norwegian cohort NORCCAP (241), and increased prevalence of cardiovascular disease on the 1527 

cohort of 184 Japanese with type-2 diabetes (238). These associations appear to be specific, as 1528 

no such relationship was found between the same variant and the risk of basal cell carcinoma in 1529 

the cohort of 317 Danish (677). Another GPX1 variant (C198T) lowering the enzyme activity 1530 

was identified in the South Indian population, which resulted in increased incidences of type 2 1531 

diabetes (C/T, 1.4-fold and T/T, 1.8-fold) (547). 1532 

 1533 

Several single nucleotide polymorphisms on GPX2 are found to affect Barrett’s esophagus and 1534 

esophageal adenocarcinoma (479). Polymorphisms of GPX3 are known to suppress the 1535 

expression of this gene and serve as a risk factor for thrombosis in cerebral veins (676). In the 3’-1536 

untranslated region of GPX4, the T/C variation at position 718 is linked to cancer susceptibility, 1537 

with the T variant being associated with a lower risk for developing colorectal cancer (44).  1538 

Likewise, polymorphisms in transcription factor binding sites of the PRX6 promoter are 1539 

associated with less favorable overall survival in breast cancer patients (589).  1540 

 1541 

B.  Novel Treatments of Antioxidant Enzyme-related Diseases 1542 

  1543 

The impact of antioxidant enzymes in disease may possibly offer novel treatment options for 1544 

redox-related diseases, provided that the molecular mechanisms are known and can be 1545 

specifically targeted. RNA interference (RNAi) technologies may thus possibly be developed for 1546 

treatment of ALS originated from single nucleotide polymorphisms in SOD1 (472, 569). Mice 1547 

expressing the missense mutant SOD1G93A-targeting shRNA were created to prove the 1548 

principle of therapeutic potential (154, 544, 552, 566, 713).  1549 
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 1550 

Commonly used drugs for treating cardiovascular diseases, such as β-adrenocepter blocker 1551 

carvedilo, ACEs, and statins (2, 738), bear SOD-like activities that suppress O2
-
. A GPX mimic 1552 

may be used to improve GSIS impaired by the GPX1 deficiency (685). Overexpressing one or 1553 

several antioxidant enzyme genes proves effective to prolong the survival of islet graft against 1554 

the anticipated host oxidative attack (480). When large doses of chemotherapeutic agents or 1555 

radiation induce severe oxidative stress, treating the patients with antioxidant enzyme mimics 1556 

may help restore their redox homeostasis (359). 1557 

 1558 

Meanwhile, there have been many studies aiming for virally mediated approaches to increase 1559 

expression of antioxidant enzymes for protective effects in models of hypertension, restenosis, 1560 

myocardial infarction, stroke, and other diseases [see (711) for a review]. For example, a gene 1561 

delivery of antioxidant enzymes such as GPX1 and SOD1 was shown to attenuate oxidative 1562 

stress in the brain of rodent models of HIV-associated neurocognitive disorders, Parkinson's 1563 

disease, and diabetic complications (5, 6, 453, 564). Similarly, gene delivery for expression of 1564 

SOD3 protects against the monocrotaline-induced hypertension in the lung of rats (312). 1565 

However, the safety and efficacy of gene therapy are still a concern, and therapeutic potentials of 1566 

viral delivery of antioxidant enzyme genes to specific tissues remains an open question.    1567 

 1568 

In contrast, inhibiting a given antioxidant enzyme or specifically silencing its gene expression 1569 

may help treat disorders related to a gain of enzymatic function. As stated above, there is a great 1570 

potential of using RNAi to specifically suppress the toxic mutant of Sod1 gene associated with 1571 

ALS (154, 544, 552, 566, 713). In addition, microRNA (miRNA), regulators of mRNA stability 1572 



72 
 

and translation, has been recently proposed as biomarkers for a variety of diseases (449). 1573 

Although numerous miRNAs targeting antioxidant enzymes have been identified in cultured 1574 

cells (243, 682), little is known about the reciprocal interactions between antioxidant enzymes 1575 

and miRNA expression during pathogenesis.  1576 

 1577 

Many types of drug-resistant cancer cells express high levels of antioxidant enzymes such as 1578 

SOD, GPX, and PRX (64, 517). Pre-treating these cells with specific antioxidant enzyme 1579 

antagonists or genetically silencing the target gene shall improve the anti-cancer drug efficacy 1580 

(741). Similarly, pre-conditioning the antioxidant enzyme status may help minimize toxicities of 1581 

commonly used drugs. Theoretically, hepatotoxicity of APAP may be attenuated if the patients 1582 

are treated with TrxR1, SOD1 or GPX1 inhibitors, perhaps along with some GPX3 mimic, 1583 

before administration. This notion is based on the fact that knockout of Txnrd1, Sod1 or Gpx1 1584 

renders mice resistant to the drug-induced protein nitration and toxicity (see above), but 1585 

overexpression of GPX3 protects against APAP hepatotoxicity (458).  1586 

 1587 

Targeting of antioxidant enzymes may possibly also be applied to treat chronic diseases such as 1588 

type 2 diabetes. Insulin resistance is the hallmark of the disease, and is inversely related to the 1589 

oxidative inhibition of protein phosphatases in GSIS. When Gpx1 overexpression diminishes of 1590 

intracellular H2O2 and lifts the oxidative inhibition of protein phosphatases, causing insulin 1591 

resistance (445), knockout of Gpx1 and Sod1 alone or together improved insulin sensitivity via 1592 

the opposite mechanism (684). Therefore, the injected insulin could be more effective in 1593 

lowering blood glucose, if GPX1 and SOD1 are temporarily down-regulated prior to insulin 1594 
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administration. Clearly, such clinical protocols based upon findings from mouse experiments 1595 

need to be studied and duly verified in human studies.  1596 

 1597 

C. Antioxidant Nutrients  1598 

 1599 

1. Perception and mixed outcomes of intervention trials 1600 

 1601 

Antioxidant nutrients in foods often refer to vitamins C and E, carotenoids (particularly β-1602 

carotene), and certain trace elements such as selenium and zinc.  Antioxidants are widely used to 1603 

preserve food and beverages and to promote value-added product sales because of their 1604 

perceived health benefits (182, 233). Indeed, many people believe that “antioxidant is good, 1605 

more antioxidant is better” (234). However, more than 100 nutritional intervention trials 1606 

conducted during the past 20 years (45-47) have shown disappointing outcomes of administering 1607 

high or pharmacological doses of dietary antioxidant nutrients (46, 221, 233, 235, 537). In 1608 

contrast, supra-nutrition of selenium and elevated serum selenium concentrations are associated 1609 

with increased risk of type 2 diabetes (9, 119, 134, 363, 620). Although a re-analysis of the data 1610 

from the large Se and Vitamin E Cancer Prevention (SELECT) trial (400) found the risk for 1611 

increased prevalence of diabetes to be attributed to vitamin E supplementation (340), this 1612 

controversial finding underscores the potential risk of over-dosing antioxidant nutrients. It also 1613 

points out the need for a thorough understanding of selenium biology before large nutritional 1614 

selenium trials are initiated or when their results are to be interpreted (249, 555).  1615 

 1616 

2. Mode of actions by antioxidant nutrients 1617 
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 1618 

Antioxidant nutrients may contribute to overall antioxidant defence and interact with antioxidant 1619 

enzymes in several ways. First, some of these nutrients like vitamins C and E directly scavenge 1620 

ROS and RNS. Secondly, some of them serve as co-factors of antioxidant enzymes. Examples 1621 

include selenium in the form of Sec in GPX, copper, zinc, and manganese in SOD, and iron in 1622 

catalase. Dietary selenium deficiency is related to several diseases as is selenium toxicity (554). 1623 

While iron and zinc deficiencies are quite common, deficiencies of manganese and copper are 1624 

rare in humans. However, supplementing these nutrients to adequate subjects does not likely 1625 

elevate their pertaining antioxidant enzyme activities because the activities are supposed to be 1626 

saturated by those nutrients at the requirement levels. That fact may partially explain the lack of 1627 

positive effects of long-term supplementation of antioxidant nutrients in adequate subjects. 1628 

Thirdly, antioxidant nutrients regulate antioxidant enzyme gene expression and protein 1629 

production. For example, dietary vitamin E seems to down-regulate certain selenoprotein gene 1630 

expressions (282) and up-regulate SOD activity (506). However, optimal intakes of antioxidant 1631 

nutrients for the balance between body antioxidant enzymes and ROS/RNS still remain elusive.       1632 

 1633 

3. Effects of phytochemicals on antioxidant enzymes  1634 

 1635 

Plant foods contain a diverse range of secondary metabolites of bioactive molecules 1636 

(phytochemicals) (380). Although these low molecular weight compounds do not seem to 1637 

decrease systemic oxidative damage, polyphenols, carotenoids and tocopherols may reach high 1638 

concentrations in the gastrointestinal tract and exert effects there (236, 237). Moreover, some of 1639 

these phytochemicals (e.g., polyphenols) can exert pro-oxidant effects.  1640 
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 1641 

As discussed above, NRF2 plays a key role in maintenance of cellular redox homeostasis under 1642 

oxidative stress (49, 328, 464). Phytochemicals such as EGCG, curcumin and isothiocyanates 1643 

may induce oxidative or covalent modification of thiols in cysteine residues of NRF2, resulting 1644 

in dissociation of NRF2 from Keap1 and its translocation to the nucleus where NRF2 can 1645 

regulate gene expression of more than 200 antioxidant and phase II detoxifying enzymes (74, 1646 

252, 645). Thus, using naturally-occurring phytochemicals to up-regulate NRF2 may be a 1647 

strategy for preventing or treating chronic diseases due to insufficient NRF2 activities (49, 156, 1648 

214). However, many of these compounds also inhibit TrxR1 (89) and the resulting long-term 1649 

impact on disease must be better understood before guidelines on prevention through 1650 

supplementation with phytochemicals should be given. 1651 

 1652 

NRF2 can exert different roles in effects of various phytochemicals on cancer prevention and 1653 

development  (29, 35, 145, 420, 460, 464, 488, 596).  Many phytochemicals characterized as 1654 

NRF2 inducers (751) can be either chemopreventive or oncogenic (618). This has promoted 1655 

scientists to search for NRF2 inhibitors. For example, brusatol isolated from the seeds of Brucea 1656 

sumatrana, may inhibit NRF2 and enhance the efficacy of chemotherapeutic drugs in a mouse 1657 

xennograft model (558). A coffee alkaloid trigonelline inhibits NRF2 and renders pancreatic 1658 

cancer cells susceptible to anti-cancer drug-induced apoptosis (16). Meanwhile, NRF2 can act as 1659 

a protooncogene (596), suggested that protective effects of its activities might exist only in 1660 

normal non-cancerous cells and tissues. Overexpression of Nrf2 indeed causes chemoresistance 1661 

(742), whereas NRF2 inhibitors can overcome it (488). The complex nature between interactions 1662 
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of phytochemicals with NRF2 will require a genuinely-personalized use of such compounds for 1663 

cancer prevention or treatment (49, 210). 1664 

1665 
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VII. CLOSING REMARKS 1666 

  1667 

Strict control of ROS and RNS at physiological levels is essential to avoid disease, neither too 1668 

much nor too little being good. Recently, James Watson hypothesized that several chronic 1669 

diseases such as diabetes, dementias, cardiovascular disease and certain types of cancers may all 1670 

be linked to a failure to generate sufficient ROS (689). Another, complementary, theory is the 1671 

Triage theory proposed by Bruce Ames underscoring that distortions in trace element usage by 1672 

age underpins several diseases, which thereby also includes effects on several antioxidant 1673 

enzymes (10, 444).  1674 

 1675 

In this review, we have attempted to provide comprehensive analyses of the paradoxical 1676 

functions of SOD, catalase, GPX, TrxR, Trx, Grx, and PRX enzymes, along with other 1677 

selenoproteins and selenoprotein synthesis-related Trsp, in metabolism, health, and disease. 1678 

While paradoxes associated with these enzymes signify an alternative requirement for the body 1679 

to maintain metabolic balance, harmony, and homeostasis, our understanding of the underlying 1680 

mechanisms is far from clear. We do not know how antioxidant enzymes respond to demands for 1681 

a tight control of their substrates or products in specific tissues or whole body. We know very 1682 

little of novel functions of antioxidant enzymes independent of redox modulation. Their pro-1683 

oxidant catalytic potential and mechanism are not fully recognized or understood. Likewise, little 1684 

is revealed regarding feedback mechanism of individual antioxidant enzymes and global 1685 

coordination of different enzyme families in coping with various ROS/RNS-initiated events.   1686 

 1687 
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Because most of our discussions are based on animal experiments, many of the findings need to 1688 

be verified in humans. It is clear that a number of human diseases are associated with genetic 1689 

defects or polymorphism in specific antioxidant enzymes. However, specific, sensitive, and 1690 

reliable indicators of in vivo redox status are yet explored to identify the optimal range of the 1691 

antioxidant enzyme activities and ROS/RNS tone required by individuals according to personal 1692 

genetic makeup, life style, and living environment. While mechanisms outlined in this review for 1693 

the paradoxical roles of antioxidant enzymes may lead to alternative therapy strategies, the 1694 

challenge will be to identify surfeits and deficits among the complex array of given diseases to 1695 

design the most effective treatment. Antioxidant nutrients and phytochemicals can affect 1696 

production of ROS/RNS, functions of antioxidant enzymes, and the balance between the two. It 1697 

remains to be found out when and how these supplements are beneficial, wasteful, or even 1698 

detrimental. In conclusion, antioxidant enzymes and their ROS/RNS substrates represent a pair 1699 

of natural complements. Basic mechanisms and clinical implications for their interdependence 1700 

and counterbalance in physiology and health warrant intensive research.  1701 
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FIGURE LEGENDS 1717 

 1718 

FIGURE 1.  Protective mechanisms conferred by the Sod1 knockout against APAP toxicity. The 1719 

associated mechanisms include: 1) inhibition of protein nitration; 2) up-regulation of GR and 1720 

TrxR activities; 3) down-regulation of microsomal P450 enzyme CYP2E1 activity, decreasing 1721 

NAPQI production and the subsequent GSH depletion; and 4) inhibition of cell death signaling. 1722 

Collectively, the Sod1
-/- 

mice, as shown in the bottom graph, display a 100% survival rate over 1723 

70 h, while 75% of the wild-type mice die within 20 h after an intraperitoneal injection of 600 1724 

mg APAP/kg of body weight (from reference 379). APAP, acetaminophen; Bcl-XL, B-cell 1725 

lymphoma-extra large; CYP2E1, cytochrome P450 2E1; GR, glutathione reductase; GSH, 1726 

glutathione; IκBε, inhibitor of NFκB, epsilon; JNK, c-jun N-terminal kinase; NAPQI, N-acetyl-1727 

p-benzoquinoneimine; NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells; p21, 1728 

cyclin-dependent kinase interacting protein 1; PARP, poly(ADP-ribose) polymerase; and TrxR, 1729 

thioredoxin reductase.  1730 

 1731 

FIGURE 2. Protections conferred by knockouts and haploid insufficiencies of Sod1, Sod2, and 1732 

Sod3 against neural and cognitive damages induced by irradiation and brain trauma. Whereas 1733 

mechanisms for the protections against the irradiation-induced damages await further 1734 

investigation, the enhanced recovery from the brain trauma in the Sod1
-/-

 mice is associated with 1735 

attenuated H2O2 production and the subsequent NFκB activation. NFκB, nuclear factor kappa-1736 

light-chain-enhancer of activated B cells. 1737 

 1738 
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FIGURE 3. Induction or potentiation of various neurological disorders by SOD1 overexpression. 1739 

While mice overexpressing SOD1 develop signs of Down’s syndrome and muscular dystrophy, 1740 

the overexpression promotes or exacerbates pathogeneses of other listed disorders including 1741 

amyotrophic lateral sclerosis that is induced by the overexpression of mutant SOD1. Respective 1742 

biochemical and neurological mechanisms for the impacts of SOD1 overexpression, along with 1743 

their change directions (up and down arrows), are schematically shown for each of the disorders. 1744 

GSH, glutathione. 1745 

 1746 

FIGURE 4.  Aggravation of prolonged alcohol intake-induced hepatic toxicity by Sod2 1747 

overexpression. The main proposed mechanism is that Sod2 overexpression leads to 1748 

accumulation of hepatic iron that partially replaces manganese in the active site of Sod2 to form 1749 

Fe-Sod2. Consequently, Fe-Sod2 catalyzes production of hydroxyl radicals from H2O2 that cause 1750 

lipid peroxidation and mitochondrial damage. Likely, the increased hepatic iron and H2O2 may 1751 

also enhance production of hydroxyl radicals through Fenton reactions. In fact, the exacerbated 1752 

effect of Sod2 overexpression can be prevented by iron chelators. Meanwhile, the anticipated 1753 

diminished levels of superoxide anion may remove its beneficial role in limiting the propagation 1754 

of lipid peroxidation and blunt the ethanol induction of iNOS and subsequent up-regulation of 1755 

PGC-1, leading to mtDNA depletion. Fe-Sod2, iron-substituted superoxide dismutase 2; iNOS, 1756 

inducible nitric oxide synthase; mtDNA, mitochondrial DNA; NO, nitric oxide; and PGC-1, 1757 

peroxisome proliferator activated receptor gamma coactivator 1. 1758 

 1759 

FIGURE 5. Divergent effects of catalase overexpression on susceptibility to diabetes. The β-cell 1760 

specific overexpression of catalase in non-obese diabetic mice leads to early onset of 1761 
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spontaneous diabetes in male mice, with accelerated occurrence of diabetes by inhibition of the 1762 

Akt-Foxo1-Pdx1 survival pathway in islets following cyclophosphamide administration. In 1763 

contrast, such overexpression prevents diabetogenic effects of streptozotocin in non-diabetic 1764 

mice. In insulin-producing cells, finally, overexpression of catalase in mitochondria renders 1765 

strong resistances to cytokine-induced cytotoxicity, whereas its overexpression in cytoplasm 1766 

leads to weak protection. Akt, protein kinase B; Foxo1, forkhead box O1; and Pdx1, pancreatic 1767 

and duodenal homeobox 1.  1768 

 1769 

FIGURE 6. Comparative mechanisms for improved insulin sensitivity in Sod1
-/- 

and Gpx1
-/-

 1770 

mice.  Knockout of Sod1 elevates hepatic IRβ protein and muscle Akt phosphorylation after 1771 

insulin stimulation, whereas knockout of Gpx1 induces only the latter. Meanwhile, embryonic 1772 

fibroblast cells from Gpx1
-/-

 mice are manifested with enhanced Pten oxidation and PI3K/Akt 1773 

activation after insulin addition. These changes are presumably (dashed arrows) upstream of Akt 1774 

phosphorylation and result in improved insulin sensitivity. However, such impact of Sod1 1775 

deletion has not been tested yet (question mark). In addition, Gpx1
-/-

 mice fed a high fat diet 1776 

display, following insulin challenge, enhanced glucose update through membrane docking of 1777 

glucose transporter 4 upon AS160 phosphorylation on Thr
642

. Akt, protein kinase B; AS160, the 1778 

160 kDa substrate of Akt; IRβ, β subunit of insulin receptor; PI3K, phosphatidylinositol-3-1779 

kinase; and Pten, phosphatase and tensin homolog. 1780 

 1781 

FIGURE 7. Distinctive mechanisms between knockouts of Sod1 and Gpx1 in lowering 1782 

pancreatic islet β cell mass and plasma insulin concentration via down-regulation of the key 1783 

transcription factor Pdx1. While knockout of Gpx1 decreases only the Pdx1 protein in islets, 1784 
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knockout of Sod1 exerts suppression at three levels of Pdx1 regulation: epigenetic, mRNA, and 1785 

protein. The down regulation of Pdx1 mRNA and protein upon Sod1 knockout coincides with 1786 

decreased mRNA and protein levels of Foxa2, a transactivator of Pdx1, as well as attenuated 1787 

binding of Foxa2, H3 acetylation, and H3K4, trimethylation in the proximal region of the Pdx1 1788 

promoter. Foxa2, forkhead box A2; H3, histone-3; K4, lysine-4; ORF, open reading frame; and 1789 

Pdx1, pancreatic and duodenal homeobox 1. 1790 

 1791 

FIGURE 8. Paradoxical roles of bovine GPX1, Gpx1 knockout, and GPX1 overexpression in 1792 

coping with PN-mediated protein nitration and toxicity in cell-free system, primary hepatocytes, 1793 

and mice. Different insult-mediated responses with net impacts of enzyme expression, and 1794 

reported or proposed mechanisms are summarized in this figure. APAP, acetaminophen; DQ, 1795 

diquat; GSH, glutathione; GST, glutathione S-transferase; PN, peroxynitrite; and SNAP, S-1796 

nitroso-N-acetyl-penicillamine.  1797 

 1798 

FIGURE 9. Mechanisms of protection conferred by Gpx1 knockout against kainic acid-induced 1799 

neurotoxicity. Gpx1 deficiency may elevate H2O2 production that can oxidize thiols in the 1800 

NMDA receptor-1 subunit, which deactivates the NMDA receptor and subsequently attenuates 1801 

or blocks kainic acid-induced oxidative stress and injuries. This oxidative stress can also be 1802 

protected by antioxidants. EUK-134, a synthetic SOD and catalase mimic; GSH, glutathione; and 1803 

NMDA, N-methyl-D-aspartate. 1804 

FIGURE 10. Molecular and biochemical mechanisms for the type 2 diabetes-like phenotypes 1805 

induced by Gpx1 overexpression in mice. The diminished H2O2 accumulation in pancreatic islets 1806 

may enhance β cell mass and insulin synthesis and secretion via modulation of key signaling 1807 
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genes and proteins at epigenetic, mRNA, and(or) protein levels. These effects lead to 1808 

hyperinsulinemia and hyper-secretion of insulin. Meanwhile, Gpx1 overexpression also impairs 1809 

insulin responsiveness in liver and muscle and disturbs lipogenesis, glycolysis, and 1810 

gluconeogenesis in those tissues. The reported modes of action for those impacts include 1811 

modulation of key gene expression, protein function, and enzyme activities. The outcomes from 1812 

these effects in insulin-responsive tissues are reflected by insulin resistance, hyperglycemia, 1813 

hyperlipidemia, and obesity. The overall phenotypes from GPx1 overexpression in either insulin 1814 

producing or insulin responsive tissues, resemble type 2 diabetes.  Representative key factors for 1815 

each of the main pathways or phenotypes are listed in brackets. Acc1, acetyl-coenzyme A 1816 

carboxylase 1; Beta2, neurogenic differentiation 1; Cat, catalase; Cfos, fbj murine osteosarcoma 1817 

viral oncogene homolog; Fasn, fatty acid synthase; Foxa2, forkhead box a2; Ins1, Insulin 1; IRβ, 1818 

the β-subunit of insulin receptor; Kir6.2, the KCNJ11 subunit of ATP-sensitive K
+
 channel; p53, 1819 

transformation related protein 53; Pdx1, pancreatic and duodenal homeobox 1; Ppar, 1820 

peroxisome proliferator-activated receptor ; Pregluc, Preproglucagon; Sur1,  sulfonylurea 1821 

receptor; Ucp2, uncoupling protein 2; Akt, protein kinase B; GK, glucokinase; PEPCK, 1822 

phosphoenolpyruvate carboxykinase; and ∆, mitochondrial membrane potential.  1823 

FIGURE 11. Intriguing roles of GPX isoenzymes in carcinogenesis. Overexpression of GPX1 in 1824 

mice promotes DMBA/TPA-induced skin cancer, whereas adenoviral delivery of GPX1 to 1825 

pancreatic tumor xenografts slows tumor growth in nude mice. This contrast illustrates tissue- or 1826 

stage-specific roles of GPX1 in carcinogenesis. As depicted in the middle yellow box, Nrf2 and 1827 

β-catenin that are associated with cancer, were shown to up-regulate GPX2 expression in 1828 

cultured human cells. Knockout of Gpx2 either stimulates or inhibits AOM-DSS-induced 1829 

intestinal tumorigenesis at early or late stages, respectively.  The relative stage-specific effects 1830 
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are indicated on the pink-colored triangle box, exemplifying the temporal dependence of the 1831 

GPX enzyme in carcinogenesis. In addition, knockout of Gpx3 in mice promotes AOM/DSS-1832 

induced colitis-associated carcinoma, but knockdown of the enzyme by shRNA inhibits leukemia 1833 

stem cell renewal. This comparison illustrates the cancer type- and(or) model-specific role of the 1834 

GPX enzyme in carcinogenesis. AOM/DSS, azoxymethane/dextran sodium sulfate; DMBA/TPA, 1835 

7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate; Nrf2, NF-E2-related 1836 

factor 2; and shRNA, small hairpin RNA. 1837 

 1838 

FIGURE 12. Paradoxical effects of TrxR1 overexpression, genetic loss or drug inhibition. Three 1839 

separate states of TrxR1 can have either beneficial (top) or detrimental (bottom) effects in 1840 

mammals, as summarized in this figure. Native TrxR1 promotes cell viability through diverse 1841 

functions of the Trx system, including support of Prxs, Msrs, and RNR as well as modulation of 1842 

redox signaling pathways. However, cancer cells may also rely on TrxR1 activity to proliferate 1843 

and the enzyme can thus promote cancer progress as well as metastases. Genetic targeting of 1844 

TrxR1 is embryonically lethal, while conditional knockout in differentiated tissues such as 1845 

hepatocytes result in Nrf2 activation and an increased resistance to oxidative challenges. When 1846 

targeted by inhibitors, the TrxR1 enzyme can also gain an NADPH oxidase activity in addition to 1847 

loss of its native Trx1 reducing capacity, which further activates Nrf2 but can also trigger cancer 1848 

cell death, toxic side effects in normal tissues and increased dependence upon GSH for survival. 1849 

APAP, acetaminophen; Msrs, methionine sulfoxide reductases; NAPQI, N-acetyl-p-1850 

benzoquinoneimine; Nrf2, NF-E2-related factor 2; Prxs, peroxiredoxins; RNR, ribonucleotide 1851 

reductase; Trx, thioredoxin; and TrxR1, thioredoxin reductase-1. 1852 

 1853 

http://en.wikipedia.org/wiki/12-O-Tetradecanoylphorbol-13-acetate
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FIGURE 13. Scheme of mechanisms of paradoxical outcomes upon modulation of antioxidant 1854 

enzyme status. In general, either detrimental or beneficial impacts of antioxidant enzyme 1855 

overexpression or knockout arise from complex interplays among redox active enzymes, their 1856 

substrates, and the enzymatic reaction environment. Different ROS/RNS species and antioxidant 1857 

enzymes discussed in this review are illustrated, along with their representative features (in black 1858 

text) of chemistry, free radical biology, and metabolism that may all trigger paradoxical 1859 

outcomes. Specifically, the dose, reactivity, and localization of ROS/RNS substrates can lead to 1860 

differential impacts on oxidative stress and redox signaling pathways. Impacts and mechanisms 1861 

of reductant substrates (e.g., GSH) in the “paradox” are shown in the context of antioxidant 1862 

enzyme catalysis. The antioxidant enzymes can themselves contribute to the paradoxical 1863 

outcomes by acting as pro-oxidants, either by catalyzing production of certain ROS/RNS or 1864 

over-consuming reducing equivalents, depleting ROS/RNS required for signaling, acting on non-1865 

canonical substrates, exhibiting non-redox functions, inducing compensatory responses, or 1866 

having overlapping functions with other enzymes. The environmental context, i.e. physiological 1867 

(non-stress) or pathophysiological (metabolic stress, oxidative injury, nutrient deficiency, or drug 1868 

toxicity) state, the experimental model, as well as spatial or time constraints, will determine the 1869 

final phenotype. Thus, apparent paradoxes in antioxidant enzyme overexpression and knockout 1870 

studies should be viewed in a well-defined physiological context as a combined interactions of 1871 

all of these factors. Cat, catalase, Gpx, glutathione peroxidase; Grx, glutaredoxin; MsR, 1872 

methionine sulfoxide reductase; Prx, peroxiredoxin; ROS, reactive oxygen species; RNS, 1873 

reactive nitrogen species; Sepp1, selenoprotein P; Trsp, selenocysteine tRNA gene; Sod, 1874 

superoxide dismutase; Trx, thioredoxin; and TrxR, thioredoxin reductase. 1875 
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Table 1 Commonly-used mouse models for antioxidant enzyme overexpressing and 

knockout  
Enzyme/ 

Protein 

Overexpression Knockout 

Nature of the transgene Altered site Reference Disrupted gene Altered 

site 

Reference 

Cu,Zn-

superoxide 

dismutase 

(SOD1) 

The entire human SOD1 gene 

contained in a 14.5-kb genomic 

fragment 

Brain, liver, 

heart, and lung 

(87, 170, 

681) 

Sod1 Global (264, 285, 

443, 556) 

The entire human SOD1 gene 

contained in a 64-kb genomic 

fragment 

Brain, heart, 

kidney, liver, 

lung, skeletal 

muscle, and 

spleen 

(103) 

Mn-superoxide 

dismutase 

(SOD2) 

A human SOD2 expression 

construct driven by 3.7 kb of the 

promoter and 5' flanking 

sequences of the human 

surfactant protein C gene 

Lung (703) Sod2 Global 
and 

tissue-

specific 

(291, 370, 

392, 563, 

621)  

 

A human SOD2 expression 

construct controlled by 3 kb of 5' 

flanking sequence plus 5' 

untranslated region and intron 1 

of the human β-actin gene. 

Brain, eye, 

heart, lung, 

skeletal 

muscle, 

spleen, and 

tongue 

(266, 494, 

727) 

The entire mouse Sod2 gene 

contained in a 14-kb genomic 

fragment 

Brain, heart, 

kidney, liver, 

and lung 

(542) 

A human SOD2 expression 

construct driven by 570 bp of 5’ 

flanking sequence and promoter 

of the rat insulin I gene 

Pancreatic β-

cells 

(99) 

A human SOD2 expression 

vector controlled by a 2-kb 

promoter and 10-kb enhancer of 

the mouse Tie2 (a vascular 

endothelial-specific receptor 

tyrosine kinase) gene  

Endothelial 

cells 

(226) 

A human SOD2 expression 

construct controlled by a 5.5-kb 

mouse genomic fragment 

containing the last intron of the 

β-myosin heavy chain (MHC) 

gene to exon 3 of the α-MHC 

gene 

Heart (597) 

Extracellular 

superoxide 

dismutase 

(SOD3) 

A human SOD3 expression 

construct controlled by 3 kb of 5' 

flanking sequence plus 5' 

untranslated region and intron 1 

of the human β-actin gene. 

Brain, heart, 

and skeletal 

muscle 

(509) Sod3 Global (81) 

A human SOD3 expression 

construct driven by 3.7 kb of the 

promoter and 5' flanking 

sequences of the human 

surfactant protein C gene 

Lung (189) 

Catalase A rat CAT expression construct Heart (319) Cat Global (268) 
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(CAT) downstream of a 5.5-kb mouse 

genomic fragment containing the 

last intron of the β-myosin heavy 

chain (MHC) gene to exon 3 of 

the α-MHC gene  

A human CAT expression 

construct controlled by a 2.8-kb 

mouse α-fetoprotein enhancer 

element I fused to 1.8 kb of the 

human β-globin promoter 

Liver and gut (486) 

A rat CAT expression construct 

driven by 570 bp of 5’ flanking 

sequence and promoter of the rat 

insulin I gene 

Pancreatic β-

cells 

(717) 

Three human CAT expression 

constructs (peroxisome-, 

nucleus-, and mitochondria-

targeted) driven by the  

cytomegalovirus enhancer 

element and a chicken β-actin 

promoter  

Brain, heart, 

kidney, 

skeletal 

muscle, and 

spleen 

(584, 585) 

The entire human CAT gene 

contained in a 80-kb genomic 

fragment 

Brain, heart, 

kidney, liver, 

lung, skeletal 

muscle, and 

spleen 

(103) 

Glutathione 

peroxidase 1 

(GPX1) 

A human GPX1 expression 

construct controlled by the 

promoter, exon 1, and intron 1 of 

the mouse 

hydroxymethylglutaryl-

coenzyme A reductase gene  

Brain, heart, 

kidney, and 

liver 

(457) Gpx1 Global (141, 172, 

265) 

A human GPX1 expression 

construct controlled by rat 

insulin II promoter 

Pancreas (244) 

The entire mouse Gpx1 gene 

contained in a 5.3-kb genomic 

fragment 

Brain, eye, 

heart, lung, 

skeletal 

muscle, 

spleen, 

pancreas, and 

tongue 

(109, 716, 

733)  

Gastrointestinal 

glutathione 

peroxidase 

(GPX2) 

   Gpx2 Global (176, 186) 

Glutathione 

peroxidase 3 

(GPX3) 

 A human GPX3 expression 

construct controlled by the 

promoter, exon 1, and intron 1 of 

the mouse 

hydroxymethylglutaryl-

coenzyme A reductase gene 

Kidney, brain, 

and lung 

 

(457) Gpx3 Global (311) 

Phospholipid 

hydroperoxide 

glutathione 

A rat mitochondria-targeted 

Gpx4 expression driven by the 

human cytomegalovirus 

Mitochondria 

of the heart 

(136) Gpx4 Global, 

neurons, 

spermatoc

(52, 292, 

293, 581, 
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peroxidase 

(GPX4) 
immediate early enhancer and 

chicken β-actin promoter 

ytes, 

cytosol, 

mitochon

dria, 

nucleus  

590, 725) 

 A 50-kb genomic clone 

containing the entire human 

GPX4 gene  

Cerebral 

cortex, heart, 

skeletal 

muscle, 

kidney, liver 

and testes 

(548) 

Peroxiredoxin I 

(PRX1) 
   Prx1 Global (338, 484) 

Peroxiredoxin 

II (PRX2) 
   Prx2 Global (375) 

Peroxiredoxin 

III (PRX3) 

A rat Prx3 expression construct 

driven by the cytomegalovirus 

promoter  

Mitochondria 

of the heart 

(440) Prx3 Global (389) 

Peroxiredoxin 

IV (PRX4) 

A human PRX4 expression 

construct driven by the enhancer 

and promoter of the human 

cytomegalovirus immediate 

early gene  

Brain, heart, 

kidney, 

pancreas, and 

testis 

(155) Prx4 Global (300) 

Peroxiredoxin 

VI (PRX6) 

A 16.8-kb genomic fragment 

containing the entire mouse Prx6 

gene isolated from 129SvJ mice 

Intestine, 

kidney, liver, 

lung, and 

epithelial cells 

of all tissues 

(531) Prx6 Global (461, 683) 

Thioredoxin 1 

(TXN1 or 

TRX1) 

A human TXN1 expression 

construct controlled by the 

human insulin promoter and 

exons and introns of the rabbit β 

globin gene 

Pancreas (281) Txn1/Trx1 Global (438) 

A human TXN1 expression 

construct driven by 3 kb of 5' 

flanking sequence plus 5' 

untranslated region and intron 1 

of the human β-actin gene. 

Brain, heart, 

kidney, liver, 

lung, , skeletal 

muscle, 

spleen, and 

tongue 

(3, 661) 

The structure of the human 

TXN1 transgene is not 

described. 

Brain, heart, 

kidney, liver, 

lung, and skin 

(636)    

Thioredoxin 2 

(TXN2 or 

TRX2) 

The structure of the human 

TXN2 transgene is not described  

Heart (696) Txn2/Trx2 Global (490) 

Thioredoxin 

reductase 1 

(TrxR1) 

   Txnrd1 Global, 

neurons, 

liver, 

heart 

(79, 305) 

Thioredoxin 

reductase 2 

(TrxR2) 

   Txnrd2 Global, 

neurons, 

heart 

(123, 330) 

Selenoprotein P 

(SEPP1)  

   Sepp1  Global  (259, 583) 

Glutaredoxin 1 

(Grx1or Glrx1 

  (478) Glrx1 global (4, 267, 

270)  

Glutaredoxin 2 

(Grx2 or Glrx2) 

   Grx2 global (426, 427, 

710) 
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Selenocysteine 

tRNA (Trsp) 
A 1.93-kb genomic DNA 

containing the entire mouse Trsp 

gene with mutations of TC at 

position 9 and AG at position 

37 

Brain, kidney, 

liver, and 

testes 

(471) Trsp Global 

and 12 

tissue-

specific 

knocko

ut 

(54, 356) 

Methionine 

sulfoxide 

reductase A 

(MSRA) 

Three mouse MsrA expression 

constructs (wild-type, 

mitochondria-targeted, and 

cytosolic) controlled by the 

cytomegalovirus enhancer and 

chicken β-actin promoter. 

Liver, skin 

fibroblasts 

(752) MsrA Global (468) 

Methionine 

sulfoxide 

reductase B 

(MSRB) 

   MsrB1 Global (190) 
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Table 2. Physiological impacts or pathological responses of superoxide dismutase-1 

overexpression and knockout in mice 

  Organ/ 

Condition 
Phenotype Reference 

 
O

v
er

ex
p

re
ss

io
n

 

Brain and 

neurological 

system 

 

Ameliorate brain injuries induced by cold or subarachnoid hemorrhage (in rats) via 

suppressing MMP-2 and MMP-9 or activation of Akt/GSK-3β.  

(93, 169, 313, 

467) 

Protect vulnerable motor neurons after spinal cord injury via attenuating the 

mitochondrial apoptosis pathway (in rats) 
(624, 737) 

Attenuate kainic acid-induced neurotoxicity in hippocampus and striatum   (260, 586) 

Alleviate phenotypes of Parkinson’s disease by elevating dopamine and suppressing 

lipid peroxidation, protein nitration  

(294, 536, 

647) 

Vascular 

system 

Protect against post-angioplasty response and neointimal formation (adenovirus-

mediated gene overexpression in rabbit tissue) 
(358) 

Lung 
Alleviate pulmonary oxygen toxicity and prolong survival    (695) 

Resistant to allergen-induced changes in airway control  (369) 

Ischemic 

injury 

Protect against cerebral ischemic injury (in mice/rats) 
(100, 345, 

476) 

Render the heart resistant to myocardial ischemia/reperfusion injuries and protect 

against ischemia-reperfusion injury, inflammatory responses and apoptosis in cardiac 

graft 

(106, 642, 

681) 

Diabetes 

Protect against diabetogenesis and diabetic nephropathy by suppressing glomerular 

nitrotyrosine formation and matrix protein synthesis  

(129, 148, 

354) 

Abolish maternal diabetes-induced embryopathy, block maternal hyperglycemia-

induced activation of PKCα/βII and PKCδ and lipid peroxidation  

(232, 391, 

679) 

Cancer Reduce mutation frequency in cerebellum (357) 

K
n

o
ck

o
u

t 

Brain and 

neurological 

system 

 

Undergo marked hypertrophy and altered responses to acetylcholine in cerebral 

arterioles  
(36, 152) 

Vulnerable to axonal injury such as axotomy and ischemic insults, and altered calcium 

homeostasis in spinal motor neurons   
(556, 611) 

Increase susceptibility to MPTP-induced phenotypes of Parkinson’s disease    (746) 

Drive phenotypes of Alzheimer’s disease such as Aβ oligomerization and memory 

loss  
(477) 

Display a modified distribution of fiber types and fiber loss, muscle atrophy and 

weakness  

(348, 349, 

367) 

Vascular 

system 

Lead to dysfunctions in endothelial-dependent vasodilation and myogenic tone, and 

accelerated vascular aging in endothelial progenitor cells  

(125, 151, 152, 

228, 674) 

Lung 

Increase NFAT activity and NFATc3 nuclear localization resulted from elevated 

superoxide/H2O2 ratio,  induce spontaneous pulmonary hypertension in pulmonary 

arteries 

(546) 

Liver 

Alter hepatic gluconeogenesis, glycolysis, and lipogenesis, and induce lipid 

accumulation by impaired lipoprotein secretion 
(662, 680) 

Enhance sensitivity to acute paraquat and alcohol-induced liver toxicity  (264, 329) 

Ischemic 

injury 

Impair neovascularization induced by hindlimb ischemia  (228) 

Aggravate ischemia/reperfusion-induced myocardial, hippocampal and renal injuries 

(in mice/rats) 

(100, 719, 

731) 

Diabetes 

Accelerate diabetic renal injury  (147) 

Impair islet function, pancreas integrity, and body glucose homeostasis by elevating 

islet superoxide, upregulating p53 phosphorylation and downregulating Foxa2/Pdx1 

pathway 

(684) 

Increase susceptibility to ocular disorders such as cataract and progressive retinal cell 

loss  

(247, 295, 

500-503) 

Immune 

response 

Increase susceptibility to the experimental autoimmune encephalomyelitis  (436) 

cause anemia and autoantibody production by elevating oxidative stress in 

erythrocytes 
(299) 
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Kidney 

Exhibit an increase in phosphorylation of iron regulatory protein 1(IRP1) in kidney, 

leading to increased binding to iron-responsive elements (IREs)  
(734) 

Susceptible to hydronephrosis- and salt-induced hypertension and histopathological 

changes  
(82) 

Cancer 
Show reduced lifespan and increased carcinogenesis in late life with oxidative 

damage-accelerated spontaneous mutations in liver and kidney  
(73, 167) 

Others 

Lead to embryonic two-cell arrest or cell death, and impaired sperm motility and 

fertilizing ability 

(207, 334, 

658) 

Induce age-related dysfunction of the lacrimal gland, potentiate hearing loss, cochlear 

pathology, bone stiffness/strength, skin morphology and wound healing 

(301, 346, 

446, 614) 
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Table 3. Physiological impacts and pathological responses of superoxide dismutase-2 

overexpression and knockout in mice 

  

 Organ/ 

Condition 

  Phenotype Reference 

O
v

er
ex

p
re

ss
io

n
 

Brain and 

neurological 

system 

Attenuate MPTP-induced phenotypes of Parkinson’s disease (342) 

Attenuate phenotypes of Alzheimer’s disease by reducing hippocampal oxidative 

stress, modulating Aβ deposition and composition,  and slowing memory deficit  

(164, 435) 

Lung 
Prevent hypoxia-mediated decrease in Na,K-ATPase and alveolar fluid reabsorption 

(adenovirus-mediated gene overexpression in rats)   

(401) 

Liver 
Protect against liver mitochondrial DNA depletion and respiratory complex 

dysfunction after an alcohol binge  

(433) 

Diabetes 

Ameliorate high-fat diet-induced insulin resistance in rat skeletal muscle 

(electroporation delivery of expression vector to rat muscle ) 

(50) 

Prevent retinal VEGF expression and retinopathy in diabetic mice  (226, 351) 

Normalize contractility in diabetic cardiomyocytes with improved mitochondrial 

respiration  

(597) 

Ischemic injury 

Reduce  ischemia/reperfusion-induced vascular endothelial cell death and protects 

against blood-brain barrier damage 

(425) 

Reduces neuronal vulnerability to forebrain ischemia (injection of astrocyte-specific 

expression vector to rat brain) 

(718) 

Protect against myocardial ischemia/reperfusion-induced injury (107) 

Aging 
Preserve age-associated loss of mitochondrial DNA mass and function of ATP 

generation 

(308, 374) 

K
n

o
ck

o
u

t 

Brain and 

neurological 

system 

Show selective cerebral vascular dysfunction and accelerated disorganization of 

distal nerve axons following nerve injury 

(179, 459) 

Exacerbate phenotypes of Alzheimer disease, Parkinson’s disease and ALS  (11, 12, 

385) 

Exhibit  neurodegenerative phenotypes including frequent, spontaneous motor 

seizures 

(188, 394) 

Liver  
Exaggerate APAP-induced liver toxicity, mitochondrial dysfunction and DNA 

fragmentation 

(200, 545) 

Diabetes 
Result in severe central nervous system degeneration and subsequent gait 

deformities, seizures, and perinatal lethality in type 2 diabetes  

(497) 

Heart  
Induce cardiac mitochondrial dysfunction, severe lipid peroxidation and spontaneous 

apoptosis in myocardium, and maladaptive cardiac hypertrophy  

(563, 621, 

671) 

Vascular system 

Lead to increased vascular oxidative stress with aging and endothelial dysfunction in 

large and mesenteric arteries   

(65, 138, 

498, 720) 

Up-regulate transferrin receptor and down-regulate mitochondrial biogenesis and 

metabolism in erythroid cells  

(434) 

Kidney  Develop hypertension, mild renal damage and interstitial inflammation in aged mice  (516, 567) 

Cancer Elevate incidence of neoplasms in aging Sod2+/-Gpx1-/- mice (750) 

Ischemic injury 
Increased susceptibility to cerebral ischemia/reperfusion with activation of MMPs, 

inflammation, blood-brain barrier breakdown and high brain hemorrhage rates 

(425) 

Aging Lead to reduced lifespan and premature onset of aging-related phenotypes  (653, 675) 

Others 

Reduce contractile muscle function and aerobic exercise capacity during aging   (335, 417, 

418) 

Ocular pathology including progressive retinal thinning (578) 

A significant decrease in the respiratory capability and an increased rate of induction 

of the permeability transition in mitochondria 

(697) 
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Table 4. Physiological impacts and pathological responses of superoxide dismutase-3 

overexpression and knockout in mice 

  

 Organ/ 

Condition 

Phenotype Reference 

O
v

er
ex

p
re

ss
io

n
 

Brain and 

neurological 

system   

Protect against brain injury induced by subarachnoid hemorrhage, hyperoxia or cold 
(447, 510, 

739) 

Improve behavioral outcome from closed head injury (532) 

Protect against aging-induced memory and cognitive impairments (381, 382) 

Vascular 

system 

Reduce cuff-induced arterial neointimal formation (adenovirus-mediated gene 

expression in rat tissue) 

(511) 

Lung  

Attenuate pulmonary oxygen toxicity  by increasing cGMP activity and reducing of 

NFκB activation (aerosolized delivery of expression plasmid to neonatal rabbits) or 

by attenuating neutrophil inflammatory responses 

(7, 189) 

Preserve pulmonary angiogenesis by retaining VEGF,  VEGFR1, VEGFR2 and 

PECAM-1 

(528) 

Inhibit the development of hypoxia- or fibrosis-induced pulmonary hypertension and 

vascular remodeling, and ameliorate established pulmonary hypertension 

(8, 492, 672) 

Attenuate radiation-, endotoxin (adenovirus-mediated expression)-, influenza- or air 

pollutant-induced lung injury 

(212, 248, 

318, 539, 625) 

Immune 

response 

Attenuate inflammatory arthritis by suppressing the production of proinflammatory 

cytokines and MMPs 

(736) 

Ischemic injury 

Increased resistance to heart or cerebral ischemia/reperfusion injuries 
(97, 98, 493, 

598, 600) 

Improve recovery from surgical hind-limb ischemia (adenovirus-mediated gene 

expression) 

(579) 

Cancer Inhibit chemical-induced skin carcinogenesis (332)  

K
n

o
ck

o
u

t 

Heart  Exacerbate pressure overload-induced left ventricular hypertrophy and dysfunction (414) 

Lung  Increased susceptibility to hyperoxia (81) 

Kidney  
Exhibit renal histopathological abnormalities, hypertension, endothelial dysfunction, 

and reduced eNOS and Akt activity 

(326) 

Immune 

response 
Increased susceptibility to the collagen-induced arthritis 

(570) 

Ischemic injury Worsen the outcome from cerebral or skeletal muscle ischemia/reperfusion (519, 599) 
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Table 5. Physiological impacts and pathological responses of catalase overexpression and 

knockout in mice 

  

 Organ/ 

Condition 

Phenotype Reference 

O
v

er
ex

p
re

ss
io

n
 

Heart  

Preserve the responsiveness of the heart to adrenergic stimulation  (704) 

Attenuate cardiac contractile dysfunction induced by paraquat, anthrax, LPS, acute 

ethanol, or  hypoxia-reoxygenation, through alleviating events such as JNK-mediated 

ER stress 

(105, 208, 

317, 660, 

748, 749) 

Prevent progressive myocardial remodeling, including myocyte hypertrophy, apoptosis, 

and interstitial fibrosis due to overexpression of  Gαq 

(538) 

Protect against acute and chronic doxorubicin-induced cardiotoxicity (319, 320) 

Vascular 

system 

Prevent pathological mechanical changes underlying abdominal aortic aneurysm 

formation  

(424) 

Reduce pressure response to norepinephrine or angiotensin II  by eliminating H2O2 in 

arterial wall  

(723) 

Inhibit toxin-accelerated atherosclerosis in the hypercholesterolemic ApoE-/- mice  (722, 724) 

Kidney  
Inhibit the development of hypertension and renal injury in the angiotensinogen 

transgenic mice 

(219) 

Ischemic injury Render the heart resistant to myocardial ischemia/reperfusion injury  (386) 

Diabetes 

Increase resistance to STZ-induced β-cell injury and diabetic effect including an 

attenuation of  renal angiotensinogen and proapoptotic gene expression 

(58, 99, 

717) 

Cardiac overexpression rescues insulin resistance-induced cardiac contractile 

dysfunction  

(160) 

Prevent hypertension and progression of nephropathy by attenuating renal oxidative 

stress and normalizing ACE-2 expression in type 1 diabetes 

(603) 

Aging 

Mitochondrial overexpression prolongs lifespan with delayed age-associated 

pathologies including cardiac aging and cataract, decreases malignant 

nonhematopoietic tumor burden in old mice and  enhances hippocampus-dependent 

memory with a reduction of anxiety   

(137, 504, 

584, 654) 

Cardiac overexpression prolongs lifespan and attenuates aging-induced cardiomyocyte 

contractile dysfunction and protein carbonyl formation  

(712) 

K
n

o
ck

o
u

t Brain  
Show a decreased efficiency in brain mitochondrial respiration following cortical 

oxidative injury 

(268) 

Kidney  
Render remnant kidneys increased susceptibility to oxidant tissue injury and 

progressive renal fibrosis after nephrectomy 

(344) 

Diabetes 
Accelerate STZ-induced diabetic renal injury with increased expression of glomerular 

TGF-β and collagen α1 

(289) 
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Table 6. Physiological impacts and pathological responses of glutathione peroxidase-1 

overexpression and knockout in mice 

  

  Organ/ 

Condition 

Phenotype Reference 

 

O
v

er
ex

p
re

ss
io

n
 

Brain and 

neurological system 

Protect against 6-OHDA-induced neurotoxicity, trauma-induced 

mitochondrial dysfunction, cerebral/ischemia reperfusion and  hypoxic 

ischemic injury 

(42, 564, 595, 

691, 716) 

Heart 
Resistant to ischemia/reperfusion injury and doxorubicin-induced 

cardiomyopathy and mitochondrial dysfunction 
(714, 733) 

Liver 
Protect against paraquat-induced hepatotoxicity  (111) 

Enhanced susceptibility to acetaminophen toxicity  (458) 

Diabetes and 

metabolic 

disorders 

Contribute to hyperinsulinemia in association with the transcription 

factor PDX1 and mitochondrial uncoupling protein 2  
(686) 

β-cell-specific overexpression of human GPX1 rescues β-cell 

dysfunction and reverses diabetes in 20-week-old db/db obesity mice 
(229, 244) 

Gpx1 overexpression mice are obese  (445) 

K
n

o
ck

o
u

t 

Brain and 

neurological system 

Exacerbate neuronal toxicity induced by Aβ,  malonate, 3-nitropropionic 

acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine 
(128, 341) 

Resistant to kainic acid-induced seizure and neurodegeneration  (309) 

Heart 

Susceptible to ischemia/reperfusion injury in male mice (397, 732) 

Mutate the benign coxsackievirus B3 and induce myocarditis  (37) 

Susceptible to doxorubicin- and angiotensin II-induced aortic and cardiac 

dysfunction and oxidative stress  
(15, 206) 

Accelerated progression of atherosclerosis under a diabetic ApoE-/- 

background on a high fat diet (21% fat, 0.15% cholesterol)  
(384, 652) 

Liver and kidney 

 

Enhanced susceptibility to diquat- and paraquat-induced oxidative stress  (110, 112, 

114, 199) 

Resistance to peroxynitrite-mediated hepatic toxicity  (199) 

Accelerated diabetic nephropathy in the ApoE-/- model of diabetes  (115, 640, 

641) 

Lung  
Enhanced oxidation and lung inflammation after cigarette smoking or 

influenza A infection  
(165, 726) 

Aging  No apparent phenotype except for cataract  (142, 265) 

Carcinogenesis 
Gpx1-/-Gpx2-/- mice have spontaneous polyps formation and 

inflammation-induced tumor formation in the gastrointestinal tract  
(174) 
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Table 7. Physiological impacts and pathological responses of glutathione peroxidases 2-4 

overexpression and knockout in mice 

  

  Organ/ 

Condition 

Phenotype Reference 

 

O
v

er
 

ex
p

re
ss

i

o
n

 

Heart Mitochondrial Gpx4 (rat) attenuates ischemia/reperfusion cardiac injury  (136) 

Liver  

Human GPX4 protects against diquat-induced apoptosis and oxidative stress  (393, 548) 

Increased expression of human GPX3 in the plasma by 50% renders the mice 

resistant to APAP-induced hepatotoxicity and a thermosensitive phenotype 

(457, 458) 

K
n

o
ck

o
u

t 

Brain  and 

neurological 

system 

Gpx3-/-:  display cerebral infarctions  (311) 

Gpx4+/-:  accumulate oxidized lipids and senile plagues  (101) 

Mitochondrial Gpx4-/- : apoptosis-induced cerebral degeneration in the hindbrain  (52) 

Gpx4-/- (neuron-specific): neurodegeneration, corrected by α-tocopherol (590) 

Gpx4-/- (endothelium-specific):  vitamin E-dependent suppression of 

angiogenesis in aortic explants  

(707) 

Nuclear  Gpx4-/-: retardation in atrium formation  (52) 

Carcinogenesis 

Gpx2-/-: severe inflammation and colon carcinoma induced by AOM/DSS; 

prone to UV-induced squamous cell tumor  

(352, 678) 

Gpx3-/-:   prone to colitis-associated carcinoma and increased inflammation in 

the colon  

(32) 

Aging Gpx4+/-:  a slight lifespan extension (1029 vs 963 days)  (549) 

Others 

Gpx4-/- (photoreceptor-specific): degeneration and apoptotic death of 

photoreceptor cells  

(663) 

Gpx4-/- (spermatocytes-specific): infertility; reduced forward mobility and 

mitochondrial membrane potential in the  spermatozoa 

(292) 

Mitochondrial Gpx4-/- : infertility; impaired sperm quality and severe structural 

abnormalities in the midpiece of spermatozoa  

(581) 
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Table 8. Physiological impacts and pathological responses of thioredoxin reductases 

knockout in mice 

Gene/Isoenzyme/

Deletion 

Organ 

(Genetic model) 
Phenotype Reference 

Txnrd1 (TrxR1, 

TR1) 
   

K
n

o
ck

o
u

t 

Ubiquitous deletion Early embryonic lethality  (51, 305) 

Heart 

(MLC2a-driven knockout) 

No apparent phenotype and no effect on infarct 

size after cardiac ischemic/reperfusion injury  
(280, 305) 

Nervous system (Nestin-

driven knockout) 

Smaller mice with ataxia and tremor, cerebellar 

hypoplasia, ectopically located and abnormal 

Purkinje cells, disorganized Bergmann glial 

network. 

(617) 

Neurons 

(Tα1-driven knockout) 
No apparent phenotype (617) 

Liver 

(Alb-driven knockout) 

Strong upregulation of Nrf2-targeted genes, no 

apparent growth defect in non-treated liver but 

metabolic switch with accumulation of 

glycogen or lipids and significantly increased 

resistance to acetaminophen challenge 

(302, 520, 

535, 634) 

B-cell lymphoma 

(mb-1-driven knockout in 

λ-myc lymphoma model) 

No effect on tumor growth except induction of 

an absolute requirement of the tumors on GSH 

upon Txnrd1 knockout 

(430) 

Hepatocellular carcinoma 

(induced by 

diethylnitrosamine in Alb-

driven knockout) 

Strongly increased propensity for 

hepatocarcinogenesis  
(79) 

Txnrd2 (TrxR2, 

TR2) 
   

K
n

o
ck

o
u

t 

Ubiquitous 

Early embryonic lethality with impaired heart 

development, anemia, lack of hematopoiesis 

and liver apoptosis 

(123) 

Nervous system (Nestin-

driven knockout) 
No apparent phenotype (617) 

Heart 

(MLC2a-driven knockout) 

Congestive heart failure with signs of dilated 

cardiomyopathy, death within hours after birth 
(123) 

Heart 

(tamoxifen-induced α-

myosin heavy chain-driven 

knockout) 

Impaired cardiac function at rest and more 

severe injuries after cardiac 

ischemia/reperfusion, with NAC treatment 

normalizing the observed phenotypes 

(280) 

B- and T-cells (CD4- and 

CD19-driven knockouts) 
No apparent phenotype (209) 
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 Table 9. Physiological impacts and pathological responses of overexpression, knockout, 

and transgene of other selenium-dependent proteins and Trsp in mice 

 

 Models Phenotypes Reference 

T
rs

p
 t

ra
n

sg
en

e 

Lacking the STAF-

binding site 

Tissue-specific decrease in selenoprotein expression (brain, muscle > 

lung, spleen > liver, kidney; no change in heart and testes) 
(77) 

Mutation at position 

37 (A G) 

Tissue- and selenoprotein-specific changes in selenoprotein expression 

(GPX1, TrxR1, liver > testes); pyogranulomatous inflammation in 

various tissues   

(470, 471) 

mTOR-dependent increase of muscle growth after exercise  (279) 

Severe neurological defects and mortality in these mice on a Se-deficient 

or high Se (2.25 ppm) diet 
(324) 

Increased susceptibility to azoxymethane-,  diethylnitrosamine-, and  

C3(1)-induced carcinogenesis in intestines, liver, and prostate, 

respectively; no changes on TGFα-induced hepatocarcinogenesis  

(159, 296, 

324, 470) 

Increased X-ray-induced micronuclei formation in the erythrocytes  (27) 

Defective immune responses after the lungs were targeted with viral 

infection of influenza 
(601) 

T
rs

p
 c

o
n

d
it

io
n

a
l 

k
n

o
ck

o
u

t 

Hematopoietic cells 

(Mx1-driven) 
Prone to hemolytic anemia and defective oxidative homeostasis  (327) 

Macrophage 

(LysM-driven) 

Increased oxidative stress, induction of Nrf2 expression, defective 

immune response and expression of fibrosis-associated genes 
(635)  

T cells 

(Lck-driven) 

Defective T cell maturation and antibody responses upon T cell receptor 

stimulation 
(608) 

Neuron 

(T1-driven) 

Defects in interneuron development and cerebellar hypoplasia, increased 

striatal neuronal loss with movement disorder, and seizure due to 

spontaneous epileptiform activity 

(588, 701, 

702) 

Endothelial cells 

(TieTeK2-driven) 

Embryonic lethal. 14.5 days embryos are smaller with underdeveloped 

vascular system, limbs, tail and head  
(609) 

Osteo-

chondroprogenitor 

(Col2a1-driven) 

Growth retardation and delayed skeletal ossification reminiscent of 

Kashin-Beck disease 
(161) 

Skin 

(K14-driven) 

Small body size, alopecia, flaky and fragile skin, and early regression of 

hair follicles 
(592) 

Heart and skeletal 

muscle (MCK-driven) 
Die 12 days after birth with acute myocardial failure (609) 

Mammary gland (MMTV- 

or Wap-driven) 
Increased mammary carcinogenesis (288) 

Liver (Alb-driven) 
Premature death at 1-3 months of age, no changes in brain Se levels, and 

increased apolipoprotein E and cholesterol levels in plasma 

(76, 587, 

591) 

Kidney (NPHS2-driven) No effect on streptozotocin-induced diabetes (48) 

Prostate epithelium 

(ARR2PB-driven) 
Early onset of intraepithelial neoplasia (415) 

T
rs

p
 

k
n

o
ck

o
u

t 
 

a
n

d
 

tr
a
n

sg
en

e Mutant G37 transgene 

under global Trsp-/- Reduced fertility in males and litter size in females  (78) 

A34 or G37 

transgene in liver-

specific Trsp-/- 

Reversal of the elevated levels of apolipoprotein E and cholesterol in the 

plasma  
(591) 

 

Sepp1-/- Neuronal degeneration, loss of 55% Se in the brain, degenerated and 

dystrophic axons in the cervical spinal cords and the brainstem 

(259, 533, 

583) 

Sepp1∆240-361 Decreased Se levels in the brain (258) 

MsrB1-/- 
Oxidation of protein, lipid, and GSH in liver and kidney; actin 

fragmentation 
(190, 371) 
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