13 research outputs found

    The Earth Observation Data for Habitat Monitoring (EODHaM) system

    Get PDF
    AbstractTo support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India

    NosX function connects to nitrous oxide (N2O) reduction by affecting the CuZ center of NosZ and its activity in vivo

    Get PDF
    AbstractThe effect of loss of the 34-kDa periplasmic NosX protein on the properties of N2O reductase was investigated with an N2O-respiration negative, double mutant of the paralogous genes nosX and nirX of Paracoccus denitrificans. In spite of absence of whole-cell N2O-reducing activity, the purified reductase was catalytically active, which attributes NosX a physiological role in sustaining the reaction cycle. N2O reductase exhibited the spectroscopic features of CuA and the redox-inert, paramagnetic state, CuZ∗, of the catalytic center. CuZ∗, hitherto considered the result of spontaneous reaction of the reductase with dioxygen, attains cellular significance

    The effects of ultra-selective beta1-antagonism on the metabolic and cytokine profile in septic shock patients receiving noradrenaline: a sub-investigation from the STRESS-L Randomised Study

    No full text
    Purpose The landiolol and organ failure in patients with septic shock (STRESS-L study) included a pre-planned sub-study to assess the effect of landiolol treatment on inflammatory and metabolomic markers. Methods Samples collected from 91 patients randomised to STRESS-L were profiled for immune and metabolomic markers. A panel of pro- and anti-inflammatory cytokines were measured through commercially acquired multiplex Luminex assays and statistically analysed by individual and cluster-level analysis (patient). Metabolite fingerprinting was carried out by flow infusion electrospray ionisation high-resolution mass spectrometry and metabolomic data were analysed using the R-based platform MetaboAnalyst. The metabolites were identified using DIMEdb (dimedb.ibers.aber.ac.uk) from their mass/charge ratios. These metabolomic data were also re-analysed using individual and cluster-level analysis. The individual-level models were adjusted for confounders, such as age, sex, noradrenaline dosage and patient (random effect). Results Analysis was undertaken at cluster- and individual-level. There were no significant differences in cytokine concentration level between trial arms nor survivors and non-survivors over the duration of the observations from day 1 to day 4. Metabolomic analysis showed some separation in the levels of ceramides and cardiolipins between those who survived and those who died. Following adjusted analysis for confounders, plasma metabolite concentrations remained statistically different between landiolol and standard care arms for succinic acid, l-tryptophan, l-alanine, 2,2,2-trichloroethanol, lactic acid and d-glucose. Conclusions In a study of ICU patients with established septic shock and a tachycardia, landiolol treatment used to reduce the heart rate from above 95 to a range between 80 and 94 beats per minute did not induce significant cytokine changes. d-Glucose, lactic acid, succinic acid, l-alanine, l-tryptophan and trichloroethanol were pathways that may merit further investigation. Trial Registration: EU Clinical Trials Register Eudra CT: 2017-001785-14 (https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-001785-14/GB); ISRCTN registry Identifier: ISRCTN12600919 (https://www.isrctn.com/ISRCTN12600919)

    Effect of Convalescent Plasma on Organ Support–Free Days in Critically Ill Patients With COVID-19

    Full text link

    Stratified analyses refine association between TLR7 rare variants and severe COVID-19

    No full text
    Summary: Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10−10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax = 46.5, p = 1.74 × 10−15). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway
    corecore