482 research outputs found

    Methods of imaging articular cartilage under shear

    Get PDF
    Characterizing both the structure of articular cartilage, and its biomechanical properties is key to gaining a full understanding of how the tissue functions. Articular cartilage is an inhomogeneous tissue with a depth dependent functional structures. This results in anisotropic depth dependent mechanical properties, which help this tissue deal with a harsh mechanical environment. Collagen fibers orientation plays an important role in the significant depth dependent functional traits of articular cartilage. Distinguishing the structural regions of articular cartilage, and relating that to the depth dependent mechanical properties of the tissue, could lead to a significant increase in our understanding of the relationship between structure and function for articular cartilage.by Charles JacobyIncludes bibliographical reference

    Abundance and Sizes of Bay Scallops in Heterogeneous Habitats Along the Gulf Coast of Florida

    Get PDF
    Southern bay scallops (Argopecten irradians concentricus) form the basis of a recreational fishery along Florida\u27s Gulf Coast. Recent declines in scallop abundances have led to significant harvest restrictions. As a way to gain insight into influences on scallop abundances and size, surveys of bay scallops and coastal habitats were conducted in two relatively undisturbed, shallow estuaries along the north-central Gulf Coast of Florida. Scallop abundances did not vary significantly between years or between locations kilometers apart. Shell heights did vary significantly between years at locations kilometers apart; however, these differences were not consistently related to differences in chlorophyll concentrations in the water column or distributions of benthic habitat classes. At the 100-m scale within locations, scallops were not proportionally distributed across the major habitat classes (i.e., Syringodium filiforme, Thalassia testudinum, mixed seagrass assemblage, other seagrasses, and areas of no/low seagrass cover). In general, proportionately more scallops were observed in association with S. filiforme, T. testudinum, and mixed seagrass habitats. Bay scallops collected from S. filiforme and areas of no/low grass cover were consistently 1-3 mm larger than those collected from T. testudinum and mixed seagrass assemblages. These results suggest the importance of S. filiforme and T. testudinum as habitats for bay scallops. The results also point to the need for further investigation into possible functional differences among seagrass species that may influence the ecology of bay scallops at a small spatial scale and the need for closer examination of scallop movement that may allow for active habitat selection. The work presented here, plus further efforts to elucidate the drivers of small-scale differences in scallop abundances and sizes, will benefit managers who seek to enhance scallop fisheries or protect and restore coastal habitats

    Fostering collaborative research for rare genetic disease: The example of Niemann-Pick type C disease

    Get PDF
    Rare disease represents one of the most significant issues facing the medical community and health care providers worldwide, yet the majority of these disorders never emerge from their obscurity, drawing little attention from the medical community or the pharmaceutical industry. The challenge therefore is how best to mobilize rare disease stakeholders to enhance basic, translational and clinical research to advance understanding of pathogenesis and accelerate therapy development. Here we describe a rare, fatal brain disorder known as Niemann-Pick type C (NPC) and an innovative research collaborative known as Support of Accelerated Research for NPC (SOAR-NPC) which illustrates one pathway through which knowledge of a rare disease and its possible treatments are being successfully advanced. Use of the “SOAR” mechanism, we believe, offers a blueprint for similar advancement for many other rare disorders

    Variation in Seagrass-Associated Macroinvertebrate Communities Along the Gulf Coast of Peninsular Florida: An Exploration of Patterns and Ecological Consequences

    Get PDF
    Seagrasses form vast meadows of structurally complex habitat that support faunal communities with greater numbers of species and individuals than nearby unstructured habitats. The Gulf coast of peninsular Florida represents a natural laboratory ideally suited to the study of processes that shape seagrass-associated invertebrate and fish communities within meadows of a single species of seagrass, Thalassia testudinum. This suitability arises from a pronounced structural and chemical gradient that exists over ecologically relevant spatial and temporal scales, as revealed by extensive monitoring of water quality and seagrass. We hypothesized that seagrass-associated invertebrate communities would vary across five estuarine systems spread along a spatial gradient in phosphorus concentration, an important driver of seagrass and phytoplankton growth in this region. The quantitative results based on data acquired at 25 stations (75 samples, 52,086 specimens, and 161 taxa) indicated that each of the five estuarine systems were distinct with regard to species composition and differences among systems were driven by abundant or relatively common species. In addition, we found evidence to indicate food webs in seagrass meadows along this gradient may differ, especially in the relative dominance of algal grazers and predatory invertebrates. These changes in species composition and trophic roles could be driven by phosphorus directly, through increases in rates of primary production with higher concentrations of phosphorus, or indirectly, through nutrient-mediated changes in the physical structure of the seagrass canopy. Our results suggest that differences in the habitat created by T. testudinum under differing phosphorus supplies lead to ecologically significant shifts in macroinvertebrate communities

    Cuban Connection: Regional Role for Florida's Manatees

    Get PDF
    The status of the West Indian manatee [Trichechus manatus (Linnaeus, 1758)] remains enigmatic. The International Union for Conservation of Nature classifies the species as “Vulnerable” and the two subspecies [T. m. manatus (Linnaeus, 1758) and T. m. latirostris (Harlan, 1824)] as “Endangered.” The U.S. Fish and Wildlife Service now classifies West Indian manatees as “Threatened” primarily due to increased numbers of T. m. latirostris. Fully resolving the status of the species will require a better understanding of its population biology throughout the broader Caribbean region, especially the form and strength of genetic and demographic connections. Genetic studies indicate limited interbreeding among recent generations of groups of manatees separated by unsuitable coastal habitat or large expanses of open water, such as the Florida Straits. However, documentation of two, independent immigrations from Florida to Cuba within one generation raises the possibility of important demographic connections, especially if the number of manatees in Cuba is small. In addition, these events may foreshadow a change in the role that Florida's manatees play in effective conservation of T. manatus throughout its Caribbean range, with the potential for further connections as numbers of manatees in Florida increase and the availability of suitable habitat and food decreases

    Confirmation of SBS 1150+599A As An Extremely Metal-Poor Planetary Nebula

    Full text link
    SBS 1150+599A is a blue stellar object at high galactic latitude discovered in the Second Byurakan Survey. New high-resolution images of SBS 1150+599A are presented, demonstrating that it is very likely to be an old planetary nebula in the galactic halo, as suggested by Tovmassian et al (2001). An H-alpha image taken with the WIYN 3.5-m telescope and its "tip/tilt" module reveals the diameter of the nebula to be 9.2", comparable to that estimated from spectra by Tovmassian et al. Lower limits to the central star temperature were derived using the Zanstra hydrogen and helium methods to determine that the star's effective temperature must be > 68,000K and that the nebula is optically thin. New spectra from the MMT and FLWO telescopes are presented, revealing the presence of strong [Ne V] lambda 3425, indicating that the central star temperature must be > 100,000K. With the revised diameter, new central star temperature, and an improved central star luminosity, we can constrain photoionization models for the nebula significantly better than before. Because the emission-line data set is sparse, the models are still not conclusive. Nevertheless, we confirm that this nebula is an extremely metal-poor planetary nebula, having a value for O/H that is less than 1/100 solar, and possibly as low as 1/500 solar.Comment: 19 pages, 6 figures. Accepted for publication in the Astronomical Journa

    Fatty acid trophic markers and trophic links among seston, crustacean zooplankton and the siphonophore Nanomia cara in Georges Basin and Oceanographer Canyon (NW Atlantic)

    Get PDF
    A grant to MJY from the National Science Foundation (NSF-0002493), and USDa CRIS Project FLA-FAS-03978 supported this work. This is contribution no. 1696 to the Harbor Branch Oceanographic Institution.Fatty acid concentrations expressed as percentages of total fatty acid pools in seston, stage V copepodites of Calanus finmarchicus, adults of the euphausiid Meganyctiphanes norvegica, and the physonect siphonophore Nanomia cara were used to elucidate trophic links in Georges Basin and Oceanographer Canyon in September 2003. Seston at both locations was refractory and comprised mainly of saturated fatty acids. Phytoplankton did not contribute significantly to the fatty acid composition of seston or higher trophic levels. Only four fatty acids, i.e. 14:0, 16:0, 16:1 (n-7) and 18:1 (n-7), were transferred from seston to C. finmarchicus or M. norvegica, which suggested weak trophic interactions. Fatty acids transferred from the two species of crustaceans to N. cara included the same four fatty acids, along with three polyunsaturated fatty acids found in relatively high concentrations in both crustaceans, i.e. 20:3 (n-6), 20:5 (n-3) and 22:6 (n-3). In addition, 18:1 (n-9), which occurred in relatively high concentrations only in M. norvegica, and 18:0 and 18:2 (n-6), which were found in low concentrations in both crustaceans, also appeared to be transferred to N. cara. Overall, fatty acid trophic markers proved useful for identifying trophic links to N. cara.En este estudio se utilizaron las concentraciones de ácidos grasos (expresadas como porcentajes) para identificar posibles relaciones tróficas entre el seston, el estadio V (copepoditos) de Calanus finmarchicus, los adultos del eufáusido Meganyctiphanes norvegica, y el sifonóforo fisonecto Nanomia cara en Georges Basin y el cañón submarino Oceanographer durante Septiembre de 2003. En ambos lugares el seston era muy refractario y compuesto básicamente por ácidos grasos saturados. El fitoplancton no contribuyó de forma significativa a la composición de ácidos grasos del seston o de niveles tróficos superiores. Sólo cuatro ácidos grasos [14:0, 16:0, 16:1 (n-7) y 18:1 (n-7)] se transfirieron potencialmente del seston a C. finmarchicus o M. norvegica, lo que sugiere una débil conexión trófica entre estos eslabones de la cadena. Los ácidos grasos transferidos de las dos especies de zooplancton crustáceo a N. cara incluyen los mismos descritos más arriba y otros tres ácidos grasos poliinsaturados [20:3 (n-6), 20:5 (n-3) y 22:6 (n-3)] encontrados en concentraciones relativamente elevadas en ambos crustáceos. Además, tanto el 18:1 (n-9) (encontrado en elevadas concentraciones en M. norvegica) y los 18:0 y 18:2 (n-6) (encontrados en bajas concentraciones en ambas especies de crustáceos) se transfieren a N. cara. Los ácidos grasos demuestran ser una herramienta útil para identificar conexiones tróficas en N. cara

    The Future of Global Water Stress: An Integrated Assessment

    Get PDF
    We assess the ability of global water systems, resolved at 282 large river basins or Assessment Sub Regions (ASRs), to the meet water requirements over the coming decades under integrated projections of socioeconomic growth and climate change. We employ a Water Resource System (WRS) component embedded within the MIT Integrated Global System Model (IGSM) framework in a suite of simulations that consider a range of climate policies and regional hydroclimatic changes through the middle of this century. We find that for many developing nations water-demand increases due to population growth and economic activity have a much stronger effect on water stress than climate change. By 2050, economic growth and population change alone can lead to an additional 1.8 billion people living in regions with at least moderate water stress. Of this additional 1.8 billion people, 80% are found in developing countries. Uncertain regional climate change can play a secondary role to either exacerbate or dampen the increase in water stress due to socioeconomic growth. The strongest climate impacts on relative changes in water stress are seen over many areas in Africa, but strong impacts also occur over Europe, Southeast Asia and North America. The combined effects of socioeconomic growth and uncertain climate change lead to a 1.0 to 1.3 billion increase of the world's 2050 projected population living in regions with overly exploited water conditions— where total potential water requirements will consistently exceed surface-water supply. Under the context of the WRS model framework, this would imply that adaptive measures would be taken to meet these surface-water shortfalls and would include: water-use efficiency, reduced and/or redirected consumption, recurrent periods of water emergencies or curtailments, groundwater depletion, additional inter-basin transfers, and overdraw from flow intended to maintain environmental requirements.We assess the ability of global water systems, resolved at 282 large river basins or Assessment Sub Regions (ASRs), to the meet water requirements over the coming decades under integrated projections of socioeconomic growth and climate change. We employ a Water Resource System (WRS) component embedded within the MIT Integrated Global System Model (IGSM) framework in a suite of simulations that consider a range of climate policies and regional hydroclimatic changes through the middle of this century. We find that for many developing nations water-demand increases due to population growth and economic activity have a much stronger effect on water stress than climate change. By 2050, economic growth and population change alone can lead to an additional 1.8 billion people living in regions with at least moderate water stress. Of this additional 1.8 billion people, 80% are found in developing countries. Uncertain regional climate change can play a secondary role to either exacerbate or dampen the increase in water stress due to socioeconomic growth. The strongest climate impacts on relative changes in water stress are seen over many areas in Africa, but strong impacts also occur over Europe, Southeast Asia and North America. The combined effects of socioeconomic growth and uncertain climate change lead to a 1.0 to 1.3 billion increase of the world's 2050 projected population living in regions with overly exploited water conditions— where total potential water requirements will consistently exceed surface-water supply. Under the context of the WRS model framework, this would imply that adaptive measures would be taken to meet these surface-water shortfalls and would include: water-use efficiency, reduced and/or redirected consumption, recurrent periods of water emergencies or curtailments, groundwater depletion, additional inter-basin transfers, and overdraw from flow intended to maintain environmental requirements

    The X-ray source population of the globular cluster M15: Chandra high resolution imaging

    Full text link
    The globular cluster M15 was observed on three occasions with the High Resolution Camera on board Chandra in 2001 in order to investigate the X-ray source population in the cluster centre. After subtraction of the two bright central sources, four faint sources were identified within 50 arcsec of the core. One of these sources is probably the planetary nebula, K648, making this the first positive detection of X-rays from a planetary nebula inside a globular cluster. Another two are identified with UV variables (one previously known), which we suggest are cataclysmic variables (CVs). The nature of the fourth source is more difficult to ascertain, and we discuss whether it is possibly a quiescent soft X-ray transient (qSXT) or also a CV.Comment: 9 pages, 6 figures, accepted for publication in MNRAS. Original figures can be obtained from http://www.astro.helsinki.fi/~diana/M15.htm

    Coping with the Lionfish Invasion: can targeted removals yield beneficial effects?

    Get PDF
    Invasive species generate significant environmental and economic costs, with maintenance management constituting a major expenditure. Such costs are generated by invasive Indo-Pacific lionfish (Pterois spp.) that further threaten already stressed coral reefs in the western Atlantic Ocean and Caribbean Sea. This brief review documents rapid range expansion and potential impacts of lionfish. In addition, preliminary experimental data from targeted removals contribute to debates about maintenance management. Removals at sites off Little Cayman Island shifted the size frequency distribution of remaining lionfish toward smaller individuals whose stomachs contained less prey and fewer fish. Fewer lionfish and decreased predation on threatened grouper, herbivores and other economically and ecologically important fishes represent key steps toward protecting reefs. However, complete evaluation of success requires long-term data detailing immigration and recruitment by lionfish, compensatory growth and reproduction of lionfish, reduced direct effects on prey assemblages, and reduced indirect effects mediated by competition for food. Preventing introductions is the best way to avoid impacts from invasive species and early detection linked to rapid response ranks second. Nevertheless, results from this case study suggest that targeted removals represent a viable option for shifting direct impacts of invasive lionfish away from highly vulnerable components of ecosystems
    corecore