207 research outputs found

    Reoccurring neural stem cell divisions in the adult zebrafish telencephalon are sufficient for the emergence of aggregated spatiotemporal patterns

    Get PDF
    Regulation of quiescence and cell cycle entry is pivotal for the maintenance of stem cell populations. Regulatory mechanisms, however, are poorly understood. In particular, it is unclear how the activity of single stem cells is coordinated within the population or if cells divide in a purely random fashion. We addressed this issue by analyzing division events in an adult neural stem cell (NSC) population of the zebrafish telencephalon. Spatial statistics and mathematical modeling of over 80,000 NSCs in 36 brain hemispheres revealed weakly aggregated, nonrandom division patterns in space and time. Analyzing divisions at 2 time points allowed us to infer cell cycle and S-phase lengths computationally. Interestingly, we observed rapid cell cycle reentries in roughly 15% of newly born NSCs. In agent-based simulations of NSC populations, this redividing activity sufficed to induce aggregated spatiotemporal division patterns that matched the ones observed experimentally. In contrast, omitting redivisions leads to a random spatiotemporal distribution of dividing cells. Spatiotemporal aggregation of dividing stem cells can thus emerge solely from the cell's history

    Regionalization of the developing mouse telencephalon

    Get PDF
    Diese Arbeit befasst sich mit der Embryonalentwicklung des Vorderhirns bei der Maus. Es werden die zellulären und molekularen Mechanismen untersucht, die eine distinkte Entwicklung von zwei benachbarten Regionen im Telencephalon, dem zerebralen Cortex und dem Striatum, ermöglichen. Es wird gezeigt, dass Zellen, die im Cortex entstehen, innerhalb des Cortex wandern, aber nicht über die Grenze in den Striatum hinein wandern können. Auf der anderen Seite können Zellen aus dem Striatum in den Cortex hinein wandern. Die Untersuchung dieser Zellwanderung in Mausmutanten zeigt, dass die Transkriptionsfaktoren Ngn2 und Pax6, die nur von den corticalen und Grenz-Zellen exprimiert werden, notwendig sind für die Restriktion der Zellen innerhalb des Cortex. Pax6 muss auch anwesend sein, um auch die Wanderung der striatalen Zellen gering zu halten. Weiterhin wird gezeigt, dass die interzelluläre Kommunikation via Gap-Junctions an der Grenzregion zwischen Cortex und Striatum unterbrochen wird. Somit weist die cortico-striatale Grenze die gleichen Merkmale wie andere Grenzen in der Embryonalentwicklung von Vertebraten oder auch von Insekten: Eine distinkte Genexpression, die Restriktion der Zellwanderung, und die Unterbrechung der interzellulären Kommunikation

    Uncoupling of neurogenesis and differentiation during retinal development

    Get PDF
    Conventionally, neuronal development is regarded to follow a stereotypic sequence of neurogenesis, migration, and differentiation. We demonstrate that this notion is not a general principle of neuronal development by documenting the timing of mitosis in relation to multiple differentiation events for bipolar cells (BCs) in the zebrafish retina using in vivo imaging. We found that BC progenitors undergo terminal neurogenic divisions while in markedly disparate stages of neuronal differentiation. Remarkably, the differentiation state of individual BC progenitors at mitosis is not arbitrary but matches the differentiation state of post-mitotic BCs in their surround. By experimentally shifting the relative timing of progenitor division and differentiation, we provide evidence that neurogenesis and differentiation can occur independently of each other. We propose that the uncoupling of neurogenesis and differentiation could provide neurogenic programs with flexibility, while allowing for synchronous neuronal development within a continuously expanding cell pool

    Identification of bacteria from the oral cavity and cloaca of snakes imported from Vietnam

    Get PDF
    Reptiles are used for various purposes these days, including public exhibits, medicinal applications, and as laboratory animals. As the international exchange of reptiles has gradually increased, more people have had the opportunity to come in contact with these animals. Snakes typically live in the rhizosphere where various bacterial strains exist and as such they can lead to opportunistic human diseases. When snakes are encountered in veterinary medicine, it is necessary to monitor their microflora. Native microflora of reptiles imported from other countries has not yet been reported in Korea. In this study, oral and cloacae samples were collected from 18 Burmese pythons transported from Vietnam. The specimens were incubated at 37℃ for 18 h to produce colony growth under aerobic condition and isolated colonies were then identified using a VITEK automated identification system. There were fourteen types of aerobic bacteria isolated from both oral and cloacae samples, nine from only oral specimens, and fifteen from only cloacae specimens. Most bacteria isolated were opportunistic pathogens of humans which therefore have the potential to induce disease in people. Based on the microflora and the prevalence of bacterial strains in snakes, quarantine procedures for reptiles transported internationally should be strengthened. Characterization of the microflora of reptiles with the potential to induce zoonosis should be performed in those used as laboratory animals and to prevent zoonotic outbreaks in the general population as well as among veterinarians

    Construction of a taste-blind medaka fish and quantitative assay of its preference–aversion behavior

    Get PDF
    In vertebrates, the taste system provides information used in the regulation of food ingestion. In mammals, each cell group within the taste buds expresses either the T1R or the T2R taste receptor for preference–aversion discrimination. However, no such information is available regarding fish. We developed a novel system for quantitatively assaying taste preference–aversion in medaka fish. In this study, we prepared fluorescently labeled foods with fine cavities designed to retain tastants until they were bitten by the fish. The subjects were fed food containing a mixture of amino acids and inosine monophosphate (AN food), denatonium benzoate (DN food) or no tastant (NT food), and the amounts of ingested food were measured by fluorescence microscopy. Statistical analysis of the fluorescence intensities yielded quantitative measurements of AN food preference and DN food aversion. We then generated a transgenic fish expressing dominant-negative Gαi2 both in T1R-expressing and in T2R-expressing cells. The feeding assay revealed that the transgenic fish was unable to show a preference for AN food and an aversion to DN food. The assay system was useful for evaluating taste-blind behaviors, and the results indicate that the two taste signaling pathways conveying preferable and aversive taste information are conserved in fish as well as in mammals

    Sexual Phenotype Differences in zic2 mRNA Abundance in the Preoptic Area of a Protogynous Teleost, Thalassoma bifasciatum

    Get PDF
    The highly conserved members of the zic family of zinc-finger transcription factors are primarily known for their roles in embryonic signaling pathways and regulation of cellular proliferation and differentiation. This study describes sexual phenotype differences in abundances of zic2 mRNA in the preoptic area of the hypothalamus, a region strongly implicated in sexual behavior and function, in an adult teleost, Thalassoma bifasciatum. The bluehead wrasse (Thalassoma bifasciatum) is a valuable model for studying neuroendocrine processes because it displays two discrete male phenotypes, initial phase (IP) males and territorial, terminal phase (TP) males, and undergoes socially-controlled protogynous sex change. Previously generated microarray-based comparisons suggested that zic2 was upregulated in the brains of terminal phase males relative to initial phase males. To further explore this difference, we cloned a 727 bp sequence for neural zic2 from field-collected animals. Riboprobe-based in situ hybridization was employed to localize zic2 signal in adult bluehead brains and assess the relative abundance of brain zic2 mRNA across sexual phenotypes. We found zic2 mRNA expression was extremely abundant in the granular cells of the cerebellum and widespread in other brain regions including in the thalamus, hypothalamus, habenula, torus semicircularis, torus longitudinalis, medial longitudinal fascicle and telencephalic areas. Quantitative autoradiography and phosphorimaging showed zic2 mRNA hybridization signal in the preoptic area of the hypothalamus was significantly higher in terminal phase males relative to both initial phase males and females, and silver grain analysis confirmed this relationship between phenotypes. No significant difference in abundance was found in zic2 signal across phenotypes in the habenula, a brain region not implicated in the control of sexual behavior, or cerebellum

    Evidence That Descending Cortical Axons Are Essential for Thalamocortical Axons to Cross the Pallial-Subpallial Boundary in the Embryonic Forebrain

    Get PDF
    Developing thalamocortical axons traverse the subpallium to reach the cortex located in the pallium. We tested the hypothesis that descending corticofugal axons are important for guiding thalamocortical axons across the pallial-subpallial boundary, using conditional mutagenesis to assess the effects of blocking corticofugal axonal development without disrupting thalamus, subpallium or the pallial-subpallial boundary. We found that thalamic axons still traversed the subpallium in topographic order but did not cross the pallial-subpallial boundary. Co-culture experiments indicated that the inability of thalamic axons to cross the boundary was not explained by mutant cortex developing a long-range chemorepulsive action on thalamic axons. On the contrary, cortex from conditional mutants retained its thalamic axonal growth-promoting activity and continued to express Nrg-1, which is responsible for this stimulatory effect. When mutant cortex was replaced with control cortex, corticofugal efferents were restored and thalamic axons from conditional mutants associated with them and crossed the pallial-subpallial boundary. Our study provides the most compelling evidence to date that cortical efferents are required to guide thalamocortical axons across the pallial-subpallial boundary, which is otherwise hostile to thalamic axons. These results support the hypothesis that thalamic axons grow from subpallium to cortex guided by cortical efferents, with stimulation from diffusible cortical growth-promoting factors

    Nuclear Progesterone Receptors Are Up-Regulated by Estrogens in Neurons and Radial Glial Progenitors in the Brain of Zebrafish

    Get PDF
    In rodents, there is increasing evidence that nuclear progesterone receptors are transiently expressed in many regions of the developing brain, notably outside the hypothalamus. This suggests that progesterone and/or its metabolites could be involved in functions not related to reproduction, particularly in neurodevelopment. In this context, the adult fish brain is of particular interest, as it exhibits constant growth and high neurogenic activity that is supported by radial glia progenitors. However, although synthesis of neuroprogestagens has been documented recently in the brain of zebrafish, information on the presence of progesterone receptors is very limited. In zebrafish, a single nuclear progesterone receptor (pgr) has been cloned and characterized. Here, we demonstrate that this pgr is widely distributed in all regions of the zebrafish brain. Interestingly, we show that Pgr is strongly expressed in radial glial cells and more weakly in neurons. Finally, we present evidence, based on quantitative PCR and immunohistochemistry, that nuclear progesterone receptor mRNA and proteins are upregulated by estrogens in the brain of adult zebrafish. These data document for the first time the finding that radial glial cells are preferential targets for peripheral progestagens and/or neuroprogestagens. Given the crucial roles of radial glial cells in adult neurogenesis, the potential effects of progestagens on their activity and the fate of daughter cells require thorough investigation

    Lhx2 and Lhx9 Determine Neuronal Differentiation and Compartition in the Caudal Forebrain by Regulating Wnt Signaling

    Get PDF
    Initial axial patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs during gastrulation. After this patterning phase, further diversification within the brain is thought to proceed largely independently in the different primordia. However, mechanisms that maintain the demarcation of brain subdivisions at later stages are poorly understood. In the alar plate of the caudal forebrain there are two principal units, the thalamus and the pretectum, each of which is a developmental compartment. Here we show that proper neuronal differentiation of the thalamus requires Lhx2 and Lhx9 function. In Lhx2/Lhx9-deficient zebrafish embryos the differentiation process is blocked and the dorsally adjacent Wnt positive epithalamus expands into the thalamus. This leads to an upregulation of Wnt signaling in the caudal forebrain. Lack of Lhx2/Lhx9 function as well as increased Wnt signaling alter the expression of the thalamus specific cell adhesion factor pcdh10b and lead subsequently to a striking anterior-posterior disorganization of the caudal forebrain. We therefore suggest that after initial neural tube patterning, neurogenesis within a brain compartment influences the integrity of the neuronal progenitor pool and border formation of a neuromeric compartment
    • …
    corecore