1,059 research outputs found
Plasmon-Mediated Chemical Reactions on Nanostructures Unveiled by Surface-Enhanced Raman Spectroscopy.
Surface plasmons (SPs) originating from the collective oscillation of conduction electrons in nanostructured metals (Au, Ag, Cu, etc.) can redistribute not only the electromagnetic fields but also the excited carriers (electrons and holes) and heat energy in time and space. Therefore, SPs can engage in a variety of processes, such as molecular spectroscopy and chemical reaction. Recently, plenty of demonstrations have made plasmon-mediated chemical reactions (PMCRs) a very active research field and make it as a promising approach to facilitate light-driven chemical reactions under mild conditions. Concurrently, making use of the same SPs, surface-enhanced Raman spectroscopy (SERS) with a high surface sensitivity and energy resolution becomes a powerful and commonly used technique for the in situ study of PMCRs. Typically, various effects induced by SPs, including the enhanced electromagnetic field, local heating, excited electrons, and excited holes, can mediate chemical reactions. Herein, we use the para-aminothiophenol (PATP) transformation as an example to elaborate how SERS can be used to study the mechanism of PMCR system combined with theoretical calculations. First, we distinguish the chemical transformation of PATP to 4,4â-dimercaptoazobenzene (DMAB) from the chemical enhancement mechanism of SERS through a series of theoretical and in situ SERS studies. Then, we focus on disentangling the photothermal, hot electrons, and "hot holes" effects in the SPs-induced PATP-to-DMAB conversion. Through varying the key reaction parameters, such as the wavelength and intensity of the incident light, using various core-shell plasmonic nanostructures with different charge transfer properties, we extract the key factors that influence the efficiency and mechanism of this reaction. We confidently prove that the transformation of PATP can occur on account of the oxygen activation induced by the hot electrons or because of the action of hot holes in the absence of oxygen and confirm the critical effect of the interface between the plasmonic nanostructure and reactants. The products of these two process are different. Furthermore, we compare the correlation between PMCRs and SERS, discuss different scenario of PMCRs in situ studied by SERS, and provide some suggestions for the SERS investigation on the PMCRs. Finally, we comment on the mechanism studies on how to distinguish the multieffects of SPs and their influence on the PMCRs, as well as on how to power the chemical reaction and regulate the product selectivity in higher efficiencies
A systematic review and meta-analysis of the diagnostic accuracy of metagenomic next-generation sequencing for diagnosing tuberculous meningitis
ObjectiveThe utility of metagenomic next-generation sequencing (mNGS) in the diagnosis of tuberculous meningitis (TBM) remains uncertain. We performed a meta-analysis to comprehensively evaluate its diagnostic accuracy for the early diagnosis of TBM.MethodsEnglish (PubMed, Medline, Web of Science, Cochrane Library, and Embase) and Chinese (CNKI, Wanfang, and CBM) databases were searched for relevant studies assessing the diagnostic accuracy of mNGS for TBM. Review Manager was used to evaluate the quality of the included studies, and Stata was used to perform the statistical analysis.ResultsOf 495 relevant articles retrieved, eight studies involving 693 participants (348 with and 345 without TBM) met the inclusion criteria and were included in the meta-analysis. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the summary receiver-operating characteristic curve of mNGS for diagnosing TBM were 62% (95% confidence interval [CI]: 0.46â0.76), 99% (95% CI: 0.94â1.00), 139.08 (95% CI: 8.54â2266), 0.38 (95% CI: 0.25â0.58), 364.89 (95% CI: 18.39â7239), and 0.97 (95% CI: 0.95â0.98), respectively.ConclusionsmNGS showed good specificity but moderate sensitivity; therefore, a more sensitive test should be developed to assist in the diagnosis of TBM
Core-shell nanoparticle based SERS from hydrogen adsorbed on a rhodium(111) electrode
We present the first in situ surface Raman spectra of hydrogen on rhodium under electrochemical conditions using gold-core rhodium-shell (Au@Rh) nanoparticles for SERS or gold-core silica-shell (Au@SiO(2)) nanoparticles for SHINERS. The advantage of SHINERS lies in the versatility to study single crystal surfaces such as the H-Rh(111) system.NSF of China[20703032, 11074210, 20620130427, 20533040
Impacts of climate change and human activities on vegetation coverage variation in mountainous and hilly areas in Central South of Shandong Province based on tree-ring
IntroductionIt is of great significance to understand the characteristics and influencing factors of vegetation coverage variation in the warm temperate zone. As a typical region of the warm temperate zone in eastern China, the mountainous and hilly region in central-south Shandong Province has fragile ecological environment and soil erosion problem. Studying on vegetation dynamics and its influencing factors in this region will help to better understand the relationship between climate change and vegetation cover change in the warm temperate zone of eastern China, and the influence of human activities on vegetation cover dynamics.MethodsBased on dendrochronology, a standard tree-ring width chronology was established in the mountainous and hilly region of central-south Shandong Province, and the vegetation coverage from 1905 to 2020 was reconstructed to reveal the dynamic change characteristics of vegetation cover in this region. Secondly, the influence of climate factors and human activities on the dynamic change of vegetation cover was discussed through correlation analysis and residual analysis.Results and discussionIn the reconstructed sequence, 23 years had high vegetation coverage and 15 years had low vegetation coverage. After low-pass filtering, the vegetation coverage of 1911â1913, 1945â1951, 1958â1962, 1994â1996, and 2007â2011 was relatively high, while the vegetation coverage of 1925â1927, 1936â1942, 2001â2003, and 2019â2020 was relatively low. Although precipitation determined the variation of vegetation coverage in this study area, the impacts of human activities on the change of vegetation coverage in the past decades cannot be ignored. With the development of social economy and the acceleration of urbanization, the vegetation coverage declined. Since the beginning of the 21st century, ecological projects such as Grain-for-Green have increased the vegetation coverage
Management of granulomatous lobular mastitis: an international multidisciplinary consensus (2021 edition)
Granulomatous lobular mastitis (GLM) is a rare and chronic benign inflammatory disease of the breast. Difficulties exist in the management of GLM for many front-line surgeons and medical specialists who care for patients with inflammatory disorders of the breast. This consensus is summarized to establish evidence-based recommendations for the management of GLM. Literature was reviewed using PubMed from January 1, 1971 to July 31, 2020. Sixty-six international experienced multidisciplinary experts from 11 countries or regions were invited to review the evidence. Levels of evidence were determined using the American College of Physicians grading system, and recommendations were discussed until consensus. Experts discussed and concluded 30 recommendations on historical definitions, etiology and predisposing factors, diagnosis criteria, treatment, clinical stages, relapse and recurrence of GLM. GLM was recommended as a widely accepted definition. In addition, this consensus introduced a new clinical stages and management algorithm for GLM to provide individual treatment strategies. In conclusion, diagnosis of GLM depends on a combination of history, clinical manifestations, imaging examinations, laboratory examinations and pathology. The approach to treatment of GLM should be applied according to the different clinical stage of GLM. This evidence-based consensus would be valuable to assist front-line surgeons and medical specialists in the optimal management of GLM.Improving the Ability of Diagnosis and Treatment of Difficult Disease
Neutrino Physics with JUNO
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
Core-collapse supernova (CCSN) is one of the most energetic astrophysical
events in the Universe. The early and prompt detection of neutrinos before
(pre-SN) and during the SN burst is a unique opportunity to realize the
multi-messenger observation of the CCSN events. In this work, we describe the
monitoring concept and present the sensitivity of the system to the pre-SN and
SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is
a 20 kton liquid scintillator detector under construction in South China. The
real-time monitoring system is designed with both the prompt monitors on the
electronic board and online monitors at the data acquisition stage, in order to
ensure both the alert speed and alert coverage of progenitor stars. By assuming
a false alert rate of 1 per year, this monitoring system can be sensitive to
the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos
up to about 370 (360) kpc for a progenitor mass of 30 for the case
of normal (inverted) mass ordering. The pointing ability of the CCSN is
evaluated by using the accumulated event anisotropy of the inverse beta decay
interactions from pre-SN or SN neutrinos, which, along with the early alert,
can play important roles for the followup multi-messenger observations of the
next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
- âŠ