89 research outputs found

    Transfer of the brachialis to the anterior interosseous nerve as a treatment strategy for cervical spinal cord injury: Technical note

    Get PDF
    Study Design Technical report. Objective To provide a technical description of the transfer of the brachialis to the anterior interosseous nerve (AIN) for the treatment of tetraplegia after a cervical spinal cord injury (SCI). Methods In this technical report, the authors present a case illustration of an ideal surgical candidate for a brachialis-to-AIN transfer: a 21-year-old patient with a complete C7 spinal cord injury and failure of any hand motor recovery. The authors provide detailed description including images and video showing how to perform the brachialis-to-AIN transfer. Results The brachialis nerve and AIN fascicles can be successfully isolated using visual inspection and motor mapping. Then, careful dissection and microsurgical coaptation can be used for a successful anterior interosseous reinnervation. Conclusion The nerve transfer techniques for reinnervation have been described predominantly for the treatment of brachial plexus injuries. The majority of the nerve transfer techniques have focused on the upper brachial plexus or distal nerves of the lower brachial plexus. More recently, nerve transfers have reemerged as a potential reinnervation strategy for select patients with cervical SCI. The brachialis-to-AIN transfer technique offers a potential means for restoration of intrinsic hand function in patients with SCI

    Is Systemic Change Part of Pro?poor Business Approaches?

    Get PDF
    Business is increasingly seen as central to international development, given the power of companies within markets and other related systems that affect the lives of the poor. However, there is a rising sense that these approaches have generally not achieved substantial impact over the long term or at large scales. Based on a multi?level perspective of systemic change, this article explores evidence from nine case studies of pro?poor business initiatives, to examine their potential to go beyond individual company value chains and drive positive shifts in broader market systems. The analysis suggests that initiatives based around existing company value chains are less likely to be systemic than those involving the creation of new companies or platforms of actors from different parts of society. The article concludes with some implications for development agents working with business

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.

    Get PDF
    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression

    Shared genetics underlying epidemiological association between endometriosis and ovarian cancer

    Get PDF
    Epidemiological studies have demonstrated associations between endometriosis and certain histotypes of ovarian cancer, including clear cell, low-grade serous and endometrioid carcinomas. We aimed to determine whether the observed associations might be due to shared genetic aetiology. To address this, we used two endometriosis datasets genotyped on common arrays with full-genome coverage (3194 cases and 7060 controls) and a large ovarian cancer dataset genotyped on the customized Illumina Infinium iSelect (iCOGS) arrays (10 065 cases and 21 663 controls). Previous work has suggested that a large number of genetic variants contribute to endometriosis and ovarian cancer (all histotypes combined) susceptibility. Here, using the iCOGS data, we confirmed polygenic architecture for most histotypes of ovarian cancer. This led us to evaluate if the polygenic effects are shared across diseases. We found evidence for shared genetic risks between endometriosis and all histotypes of ovarian cancer, except for the intestinal mucinous type. Clear cell carcinoma showed the strongest genetic correlation with endometriosis (0.51, 95% CI = 0.18-0.84). Endometrioid and low-grade serous carcinomas had similar correlation coefficients (0.48, 95% CI = 0.07-0.89 and 0.40, 95% CI = 0.05-0.75, respectively). High-grade serous carcinoma, which often arises from the fallopian tubes, showed a weaker genetic correlation with endometriosis (0.25, 95% CI = 0.11-0.39), despite the absence of a known epidemiological association. These results suggest that the epidemiological association between endometriosis and ovarian adenocarcinoma may be attributable to shared genetic susceptibility loci

    ISBS 2018 AUCKLAND CONFERENCE SPRINZ-HPSNZ-AUT MILLENNIUM APPLIED PROGRAMME

    Get PDF
    An interactive afternoon of sessions delivered by High Performance Sport New Zealand (HPSNZ) and AUT SPRINZ Biomechanists, Performance Analysts and other biomechanics relevant sport facing practitioners. The 11 sessions are at AUT Millennium (AUTM), which is a satellite site of AUT University and the Auckland training hub for many HPSNZ supported sports such as athletics, sailing, and swimming. These sports and others (cycling, rowing, snow sports etc.) will be represented in the line-up. The applied sessions involve practical demonstrations of aspects of analysis and/or tools used to deliver in the field to directly positively impact athletes performances on the world stage. Following these engaging sessions there will be tasting of New Zealand wine, allowing for further discussion and networking. Sir Graeme Avery will be acknowledged for his contribution to sport science. Mike Stanley is AUT Millennium Chief Executive & NZ Olympic Committee President will explain the partners in the facility. AUT Millennium is a charitable trust established to help New Zealanders live longer and healthier lives, and to enjoy and excel in sport through the provision of world-class facilities, services, research and education. Founded in 2002 as Millennium Institute of Sport and Health (MISH) by Sir Stephen Tindall and Sir Graeme Avery as a premium health and fitness facility for both athletes and the public alike. Partnered with AUT University in 2009, forming AUT Millennium, to expand research and education in the sporting sector. Professor Barry Wilson is an Adjunct Professor with SPRINZ at Auckland University of Technology and will be outlining the research and student opportunities. Martin Dowson is the General Manager Athlete Performance Support at High Performance Sport New Zealand and has overall responsibility for the programme. Simon Briscoe, AUT Millennium Applied Session Coordinator, is the head of the Performance and Technique Analysis discipline within HPSNZ. Simon is coordinating the applied sessions along with technical support from Dr Allan Carman, Research Fellow, AUT SPRINZ. Jodi Cossor and Matt Ingram will provide a demonstration of a multidisciplinary approach driven by biomechanical analysis for Paralympic swimmers. Justin Evans and Sarah-Kate Millar will provide a practical session assessing the athletes rowing stroke to assist the coach on technical changes. This session will demonstrate various rowing traits and how the biomechanist and coach can work together to optimise boat speed. Mike Schofield and Kim Hébert-Losier will provide a session looking at shotput and the evidence based approach to coaching. Dr Craig Harrison and Professor John Cronin will provide examples from the AUTM Athlete Development programme. Kim Simperingham and Jamie Douglas who work with high performance rugby athletes will outline sprinting mechanics in practice. Dr Bruce Hamilton, Fiona Mather, Justin Ralph and Rone Thompson will demonstrate the approach of HPSNZ and Cycling NZ performance health teams in the use of some specific tools for prevention of injury and optimisation of performance. Kelly Sheerin, Denny Wells and Associate Professor Thor Besier will provide examples of using IMU and motion capture methods for running and basketball biomechanics research, education and service. Dr Rodrigo Bini and Associate Professor Andrew Kilding will show how linking of biomechanics and physiology improves injury prevention and performance enhancement. Robert Tang, Andre de Jong and Farhan Tinwala discuss select projects developed by Goldmine, HPSNZ’s in-house engineering team, and how these innovations have enabled unprecedented levels of biomechanics feedback. Cameron Ross and Paul McAlpine demonstrate the technology being used at the Snow Sports NZ training centre in Cadrona to enhance load monitoring of athletes. This application allows greater insight into training performances and biomechanical loads than has been previously possible in the training environment. AUT Millennium tour guides are coordinated by Josh McGeown and include Enora Le Flao, Dustin Oranchuk, Erika Ikeda, Jono Neville, Aaron Uthoff, Andrew Pichardo, Farhan Tinwala, Shelley Diewald, Renata Bastos Gottgtroy, Jessica Yeoman, Casey Watkins, Eric Harbour, Anja Zoellner, Alyssa Joy Spence, Victor Lopez Jr, and Albert Chang

    Comprehensive genetic assessment of the ESR1 locus identifies a risk region for endometrial cancer.

    Get PDF
    Excessive exposure to estrogen is a well-established risk factor for endometrial cancer (EC), particularly for cancers of endometrioid histology. The physiological function of estrogen is primarily mediated by estrogen receptor alpha, encoded by ESR1. Consequently, several studies have investigated whether variation at the ESR1 locus is associated with risk of EC, with conflicting results. We performed comprehensive fine-mapping analyses of 3633 genotyped and imputed single nucleotide polymorphisms (SNPs) in 6607 EC cases and 37 925 controls. There was evidence of an EC risk signal located at a potential alternative promoter of the ESR1 gene (lead SNP rs79575945, P=1.86×10(-5)), which was stronger for cancers of endometrioid subtype (P=3.76×10(-6)). Bioinformatic analysis suggests that this risk signal is in a functionally important region targeting ESR1, and eQTL analysis found that rs79575945 was associated with expression of SYNE1, a neighbouring gene. In summary, we have identified a single EC risk signal located at ESR1, at study-wide significance. Given SNPs located at this locus have been associated with risk for breast cancer, also a hormonally driven cancer, this study adds weight to the rationale for performing informed candidate fine-scale genetic studies across cancer types.This work was supported by the National Health and Medical Research Council of Australia (ID#1031333 to A B Spurdle, DF, A M Dunning, ID#39435 to ANECS, ID#552402, QIMR Controls); National Health and Medical Research Council of Australia Fellowship Scheme (to A B Spurdle); Principal Research Fellow of Cancer Research UK (to D F Easton); Joseph Mitchell Trust (to A M Dunning); Oxford Comprehensive Biomedical Research Centre (to I Tomlinson); The European Community's Seventh Framework Programme (grant agreement number 22175 (HEALTH-F2-2009-223175) (COGS); Cancer Research UK (C1287/A10118 to COGS and BCAC, C1287/A10710, C12292/A11174, C1281/A12014 to COGS and BCAC, C5047/A15007, C5047/A10692, C8197/A16565, C490/A10124 to SEARCH, CORGI - NSECG, to I Tomlinson); National Institutes of Health (CA128978, R01 CA122443 to MECS and MAY, P30 CA15083 to MECS, P50 CA136393 to MECS and MAY, CAHRES); Post-Cancer GWAS Initiative (1U19 CA148537, 1U19 CA148065, 1U19 CA148112 – the GAME-ON initiative); Department of Defence (W81XWH-10-1-0341); Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer; Komen Foundation for the Cure; The Breast Cancer Research Foundation; Ovarian Cancer Research Fund (to COGS); Cancer Council Queensland (ID#4196615 to ANECS); Council Cancer Tasmania (ID#403031, #ID457636 to ANECS); Medical Research Council (G0000934 to the British 1958 Birth Cohort); Wellcome Trust (068545/Z/02, 085475 to the British 1958 Birth Cohort); Wellcome Trust Human Genetics Grant (090532/Z/09/Z to NSECG); European Union (EU FP7 CHIBCHA to NSECG); The University of Newcastle (to QIMR Controls, to NECS); Gladys M Brawn Senior Research Fellowship (QIMR Controls); The Vincent Fairfax Family Foundation (QIMR Controls); Hunter Medical Research Institute (HCS, NECS); Hunter Area Pathology Service (HCS); ELAN fund of the University of Erlangen (BECS); Verelst Foundation for endometrial cancer (LES); Fred C and Katherine B Anderson Foundation (to MECS, to MAY); Mayo Foundation (to MECS, to MAY); Ovarian Cancer Research Fund with support of the Smith family, in memory of Kathryn Sladek Smith (MECS, PPD/RPCI.07 to OCAC); Helse Vest Grant (MoMaTEC); University of Bergen (MoMaTEC); Melzer Foundation (MoMaTEC); The Norwegian Cancer Society – Harald Andersens legat (MoMaTEC); The Research Council of Norway (MoMaTEC); Haukeland University of Hospital (MoMaTEC); NBN Children's Cancer Research Group (NECS); Ms Jennie Thomas (NECS); regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet (20110222, 20110483, 20110141 and DF 07015 all to RENDOCAS, to KARBAC); The Swedish Labor Market Insurance (100069 to RENDOCAS); The Swedish Cancer Society (11 0439 to RENDOCAS); Agency for Science, Technology and Research of Singapore (CAHRES); Susan G Komen Breast Cancer Foundation (CAHRES); UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge (OCAC); Baden-Württemberg state Ministry of Science, Research and Arts (ESTHER); Federal Ministry of Family Affairs, Senior Citizens, Women and Youth (ESTHER); Federal Ministry of Education and Research (BMBF) Germany (01KW9975/5 to GENICA, 01KW9976/8 to GENICA, 01KW9977/0 to GENICA, 01KW0114 to GENICA, to ESTHER); Robert Bosch Foundation (GENICA); Deutsches Krebsforschungszentrum – DKFZ (GENICA); Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, IPA (GENICA); Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus (GENICA); Deutsche Krebshilfe e.V. (70-2892-BR I to MARIE); Hamburg Cancer Society (MARIE); German Cancer Research Center (MARIE); Breast Cancer Research Foundation (MCBCS); David F. and Margaret T. Grohne Family Foundation (MCBCS); Ting Tsung and Wei Fong Chao Foundation (MCBCS); VicHealth (MCCS); Cancer Council Victoria (MCCS); Breakthrough Breast Cancer (UKBGS); Institute of Cancer Research (UKBGS); and NHS funding to the NIHR Biomedical Research Centre (UKBGS/ICR).This is the final version of the article. It first appeared from the Society for Endocrinology via http://dx.doi.org/10.1530/ERC-15-031
    • …
    corecore