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42Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
43Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
44Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
45Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo 0310, Norway
46The KG Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine,

University of Oslo, Oslo 0316, Norway
47Department of Clinical Molecular Oncology, Division of Medicine, Akershus University Hospital,

Lørenskog 1478, Norway
48Sheffield Cancer Research, Department of Oncology, University of Sheffield, Sheffield S10 2RX, UK
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0319 Printed in Great Britain

Published by Bioscientifica Ltd.
Correspondence

should be addressed

to A B Spurdle

Email

Amanda.Spurdle@

qimrberghofer.edu.au
Abstract
Excessive exposure to estrogen is a well-established risk factor for endometrial cancer (EC),

particularly for cancers of endometrioid histology. The physiological function of estrogen is

primarily mediated by estrogen receptor alpha, encoded by ESR1. Consequently, several

studies have investigated whether variation at the ESR1 locus is associated with risk of EC,

with conflicting results. We performed comprehensive fine-mapping analyses of 3633

genotyped and imputed single nucleotide polymorphisms (SNPs) in 6607 EC cases and

37 925 controls. There was evidence of an EC risk signal located at a potential alternative

promoter of the ESR1 gene (lead SNP rs79575945, PZ1.86!10K5), which was stronger for

cancers of endometrioid subtype (PZ3.76!10K6). Bioinformatic analysis suggests that this

risk signal is in a functionally important region targeting ESR1, and eQTL analysis found that

rs79575945 was associated with expression of SYNE1, a neighbouring gene. In summary, we

have identified a single EC risk signal located at ESR1, at study-wide significance. Given SNPs

located at this locus have been associated with risk for breast cancer, also a hormonally

driven cancer, this study adds weight to the rationale for performing informed candidate

fine-scale genetic studies across cancer types.
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Introduction
Endometrial cancer is the most commonly diagnosed

gynaecological malignancy in developed countries

(http://globocan.iarc.fr/). Excessive endogenous and

exogenous estrogen exposure or estrogen exposure unop-

posed by progesterone is a well-established risk factor for

the development and progression of endometrial cancer

(Kaaks et al. 2002, Key & Pike 1988). Estrogen receptor alpha

(encoded by ESR1) is the predominant receptor responsible

for mediating the effects of estrogen in the endometrium.

A number of studies have previously been performed

to investigate the hypothesis that variation at the ESR1

locus may be associated with predisposition to endo-

metrial cancer (Weiderpass et al. 2000, Sasaki et al. 2002,

Iwamoto et al. 2003, Einarsdottir et al. 2008, 2009, Wedren

et al. 2008, Ashton et al. 2009, 2010, Sliwinski et al. 2010,

Li et al. 2011), but results from these relatively under-

powered studies (maximum sample size 713 cases and

1567 controls) have been conflicting. However, compre-

hensive candidate gene and genome-wide association

studies of breast cancer, which shares many risk factors

with endometrial cancer, have identified cancer-associ-

ated risk variants at the ESR1 locus (Dunning et al. 2009,

Zheng et al. 2009, Turnbull et al. 2010, Hein et al. 2012).

These findings indicate a need for similar large-scale and

comprehensive genetic analysis of endometrial cancer

to elucidate the role of ESR1 variants in the risk of

endometrial cancer.

Here we present the results from fine-mapping of the

ESR1 locus by dense SNP genotyping and imputation in

6607 endometrial cancer cases and 37 925 controls of

European descent within the Endometrial Cancer

Association Consortium.
Materials and methods

Datasets

Genotyping of the fine-mapping dataset was performed

on a custom Illumina Infinium iSelect array (‘iCOGS’;

designed by the Collaborative Oncological Gene-environ-

ment Study, details summarized in Bahcall (2013)). All

studies have the relevant IRB approval in each country in

accordance with the principles embodied in the Declara-

tion of Helsinki, and informed consent was obtained from

all participants. Details of iCOGS genotyping of endo-

metrial cancer cases and control samples can be found in

Supplementary Table 1, see section on supplementary data

given at the end of this article and in Painter et al. (2014).
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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All cases and controls selected for analysis were of

European ancestry, as defined by Identity-By-State (IBS)

scores between study individuals and individuals in

HapMap (http://hapmap.ncbi.nlm.nih.gov/). The final

analysis of the iCOGS dataset included genotypes for

4401 women with a confirmed diagnosis of endometrial

cancer and 28 758 healthy female controls genotyped

by the Breast Cancer Association Consortium (BCAC) or

the Ovarian Cancer Association Consortium (OCAC).

Additionally, three Caucasian GWAS datasets (ANECS,

SEARCH and NSECG) were as previously described,

totalling 2206 cases and 9167 controls after quality control

(Spurdle et al. 2011, Painter et al. 2014). Overall, there were

6607 endometrial cancer cases and 37 925 controls

included in the meta-analysis of the four datasets

(ANECS, SEARCH and NSECG GWAS datasets and the

iCOGS dataset).
Fine-mapping

The study herein includes SNPs in a 1 Mb region including

ESR1 (chr6: 151 600 000–152 650 000; NCBI build 37

assembly). SNPs with a minor allele frequency O2% using

the 1000Genomes Project (March2010Pilot version 60CEU

project data) were considered for inclusion for ESR1 fine-

mapping on the iCOGS array by BCAC. In total, 975 SNPs

were selected, comprising 277 SNPs correlated (r2O0.1) with

three previously reported breast cancer associated SNPs

(rs2046210, rs3757318 and rs3020314), and a 698 SNP set

tagging all remaining SNPs in the region with r2O0.9.
Regional imputation

Genotypes for SNPs present in 1000 Genomes Phase 1

(April 2012 release) were imputed for the fine-mapping

dataset and each GWAS dataset using IMPUTE V2.0

(Howie et al. 2009). Imputation was performed separately

for each dataset. SNPs with an imputation information

score O0.8 for all four datasets and minor allele frequency

O0.01 were included in analysis. Following quality

control, a total of 3633 genotyped and imputed SNPs

were available across all four datasets (the three GWAS and

iCOGS datasets).
Association analysis

Odds ratios for each SNP were estimated for the four

imputed datasets separately, using unconditional logistic
Published by Bioscientifica Ltd.

http://globocan.iarc.fr/
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regression with a per-allele (one degree-of-freedom)

model, based on the expected genotyped dosages for the

imputed SNPs. The GWAS datasets were each analysed as a

single stratum, with adjustment for the first two (ANECS

and NSECG) and three (SEARCH) principal components.

For the iCOGS dataset, analyses were performed adjusting

for strata and for the first ten principal components, as

previously described (Painter et al. 2014). The numbers of

principal components included in the analyses were

selected to adequately account for population stratifica-

tion in each of the datasets. Results from the four studies

were combined using standard fixed-effects meta-analysis,

and between-study heterogeneity assessed by Q statistic

(Higgins & Thompson 2002). Risk estimation was per-

formed separately for each tested phenotype (endometrial

cancer, endometrioid endometrial cancer, non-endome-

trioid endometrial cancer). To determine independently

associated SNPs, we used forward stepwise logistic

regression based on all SNPs with P!0.05 in the single-

SNP analysis. At each stage, SNPs were included in the

model if they were significant at P!0.05 after adjustment

for other SNPs. To assess possible interaction with

BMI group (%30 kg/m2 or O30 kg/m2) for lead SNP

rs79575945, the significance of multiplicative interaction

was assessed by the change in the likelihood ratio estimate

after inclusion of a BMI-by-genotype interaction term to

a simpler model without this term. Analyses were

conducted using R, including the GenABEL (Aulchenko

et al. 2007), meta packages (Schwarzer 2010) and

SNPTESTv2 (Ferreira & Marchini 2011). All statistical

tests were two-sided.
eQTL analysis

Data from endometrial tumours were accessed from The

Cancer Genome Atlas (TCGA) (Cancer Genome Atlas

Research Network et al. 2013). Germline SNP genotypes

(Affymetrix 6.0 arrays) were downloaded through the

controlled access portal, while epidemiological data,

normalized RNA-Seq data and copy-number information

were downloaded through the public access TCGA portal.

There were 290 TCGA patients (221 endometrioid

histology) with complete genotype, RNA-Seq and copy-

number data included in the analysis. Quality control was

performed on the germline SNP genotypes as previously

described (Carvajal-Carmona et al. 2015). To increase the

number of SNPs in the analysis, we imputed genotypes for

SNPs present in the 1000 Genomes dataset v3 in the ESR1

region (chr6: 150 125 000–152 650 000, April 2012 release)

which were not genotyped by the Affymetrix 6.0 platform
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0319 Printed in Great Britain
using minimac (Howie et al. 2012, Fuchsberger et al. 2015)

Software. Haplotypes were phased using the MaCH

program (Li et al. 2009, 2010) before running minimac

for genotype imputation, using the recommended para-

meters (20 iterations of the Markov sampler and 200

states). SNPs imputed with a RSQR (quality measure) O0.8

and minor allele frequency O0.01 were included in the

eQTL analysis. RNA-Seq expression for genes 500 kb

upstream and downstream of ESR1 (SYNE1, ESR1,

CCDC170, C6orf211, RMND1, ZBTB2, AKAP12, MYCT1)

were adjusted for somatic copy number variation, as

previously described by Li et al. (2013). The associations

between genotype and adjusted expression for each gene

were evaluated using linear regression models by the

mach2qtl program (Li et al. 2009,2010). Associations were

considered to be statistically significant after correction for

the total number of genes analysed across the region

(0.05/8 genesZ6.25!10K3).
Results

Meta-analysis performed on 3633 SNPs that passed quality

control criteria in the four studies (iCOGS, ANECS,

SEARCH and NSECG) identified 401 SNPs associated

with endometrial cancer risk with P!0.05 (Supplementary

Table 2, see section on supplementary data given at the

end of this article), compared to 182 expected by chance.

When analysis was restricted to endometrioid-only endo-

metrial cancer, 411 mostly overlapping SNPs were

identified to be associated with a P!0.05 (Supplementary

Table 2).

Imputed SNP rs79575945 displayed the strongest

association for endometrial cancer risk (per A-allele OR

0.85 and 95% CI 0.79–0.92, PZ1.85!10K5; Fig. 1). The risk

association was slightly stronger for endometrioid endo-

metrial cancer (per A-allele OR 0.83 and 95% CI 0.77–0.90,

PZ3.76!10K6; 5611 endometrioid cases and 37 926 con-

trols). No other SNPs reached significance (P!1.85!10K5)

after conditioning on rs79575945, suggesting the presence

of a single endometrial risk signal at this locus. Similar

associations were observed for rs9341019 in the same

linkage disequilibrium (LD) block as rs79575945, which

was genotyped in all four datasets (rs9341019 OR 0.84 and

95% CI 0.76–0.92, PZ2.2!10K4; r2Z0.27 to rs79575945).

Supplementary Table 3, see section on supplementary

data given at the end of this article lists the 47 SNPs most

likely to be the causal variant underlying the risk

associations with most significant ‘lead’ SNPs

rs79575945. This SNP set was defined as the SNPs which

were in LD (r2O0.2) and had a likelihood of association
Published by Bioscientifica Ltd.
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Figure 1

Forest plot of odds ratios for the GWAS and iCOGS fine-mapping datasets

for SNP rs79575945 for all histologies and for endometrioid histology.
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with endometrial cancer !100:1 with the relevant lead

SNP (Carvajal-Carmona et al. 2015, Glubb et al. 2015).

Given BMI is a major epidemiological risk factor for

endometrial cancer, analyses were repeated adjusting

for BMI in the subset of cases (nZ4088) and controls

(nZ16 590) for whom BMI data were available, and also

assessing the possible interaction of rs79575945 with BMI

group (%30 kg/m2 or O30 kg/m2). There was no discernible

difference in effect for rs79575945 (unadjusted ORZ0.86,

PZ2.4!10K3; adjusted ORZ0.82, PZ3.7!10K4), and no

significant evidence of interaction of rs79575945 with BMI

(P-interactionZ0.15).

SNP rs79575945 was not significantly associated with

risk of non-endometrioid endometrial cancer (OR 0.94

and 95% CI 0.80–1.13, PZ0.54), although there was

reduced power to detect association due to the smaller

case sample size (iCOGS fine-mapping and NSECG GWAS

datasets only, case nZ887). No SNP reached study-wide

significance for non-endometrioid endometrial cancer

risk. Similarly, no significant associations were found in

the case-only analysis, comparing endometrioid endo-

metrial cancer patients to non-endometrioid patients

(rs79575945 OR 1.08 and 95% CI 0.89–1.30, PZ0.43).

None of the 47 potentially causal variants (Supple-

mentary Table 3, see section on supplementary data given

at the end of this article) showed evidence of an

association with ESR1 expression, using genotype and

RNA-Seq data from TCGA. The strongest association

observed for any SNP in this region with ESR1 levels in

endometrioid endometrial tumours was rs74575485

located upstream of the rs79575945 risk signal

(r2Z0.001), but this SNP was not associated with risk
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0319 Printed in Great Britain
(eQTL PZ1.45!10K3, risk PZ0.77). We found evidence of

an association between the top risk SNP rs79575945 and

increased expression of SYNE1 in endometrioid endo-

metrial tumour (eQTL PZ3.17!10K3). This association is

considered to be statistically significant after correcting

for the total number of genes analysed across the region

(P for significanceZ6.25!10K3).

We integrated location of candidate causal SNPs with

publicly available genomic data to assess likely functional

relevance of SNPs. Candidate causal SNPs mapped to a

potential regulatory element, which we defined by evidence

of enhancer-specific histone modification (mono-methyl-

ation of H3 lysine 4 (H3K4Me1)), DNaseI hypersensitivity

sites representative of open chromatin, and regions bound

by transcription factors (Fig. 2). Super-enhancers annotated

in the study by Hnisz et al. (2013) were also found to overlap

with candidate causal SNPs (Fig. 2), indicating the

functional importanceof this region. Importantly, ENCODE

data showed presence of DNaseI hypersensitivity sites and

evidence for binding of transcription factors in Ishikawa

endometrial cancer cells, indicating these regions may be

active in endometrial tumours. The binding of these

transcription factors were not found to be altered by the

candidate causal SNPs, using two independent in silico

prediction algorithms (Supplementary Table 4, see section

on supplementary data given at the end of this article).

Candidate causal SNP rs9340770 was predicted to alter

binding of p300 by HaploReg, and ENCODE data have

shown p300 binding to occur at this region in Ishikawa cells

(Encode Project Consortium et al. 2012).
Discussion

We have performed the largest and most comprehensive

study assessing the association of SNPs across the ESR1

gene with endometrial cancer risk. We provide evidence of

a study-wide significant association between endometrial

cancer risk and imputed SNP rs79575945. Our study

implemented parameters to reduce imputation errors

and minimize false-positive associations, including

rigorous pre-imputation quality control, excluding rare

SNPs (minor allele frequency !0.01) and using a high

imputation quality score threshold (O0.8) for analyses

(Marchini & Howie 2010). These measures, and the similar

association observed for the best genotyped SNP in the

same LD block as imputed lead SNP rs79575945, increase

our confidence for the observed association. Given the

strong prior evidence for association of this region with a

hormonal cancer, as well as with other hormone-related

phenotypes (Estrada et al. 2012, Perry et al. 2014),
Published by Bioscientifica Ltd.
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Figure 2

Association results for all SNPs with endometrial cancer risk from the meta-

analysis are shown in the first panel, and association with endometrioid

histological subtype the second panel. There was the same number of

genotyped or well-imputed samples available for the analysis of each SNP.

Only SNPs passing quality control (information score O0.8 and minor allele

frequency O0.01 across all datasets) are plotted as the negative log of the

P value against relative position across the locus (base position (hg19)

displayed across the top). SNPs genotyped in the iCOGS dataset are

displayed as diamonds and SNPs imputed as circles. The lead SNP,

rs79575945, is shown as a green filled circle and LD with surrounding SNPs

indicated by colour (SNPs r2R0.8 are red, r2R0.5 and !0.8 are orange,

r2R0.2 and !0.5 are yellow and r2!0.2 are unfilled). The SNP most

strongly associated with ESR1 expression in endometrial cancer tumours is

shown as a filled blue circle. Red horizontal dashed lines denote study-wide

significance thresholds (PZ2!10K4). The third panel shows a schematic of

gene structures with exons (vertical boxes) joined by introns (lines).

Enhancers predicted in Hnisz et al. (2013) which overlap SNPs associated

with the three phenotypes are depicted as coloured bars, where the colour

matches the schematic of its predicted target gene. Histone modification

associated with promoters (H3K4Me1) from seven ENCODE Project cell

types are indicated. DNaseI hypersensitivity sites (DHS) and transcription

factor (TF) binding identified in 125 and 91 ENCODE Project cell types

respectively, are displayed. DNaseI HS and transcription factor binding

regions in Ishikawa endometrial cancer cells* are also shown. The grey

vertical stripe indicates the putative promoter region overlapping the risk

signal. *Note in 2015 ENCODE re-identified ECC-1 cells as Ishikawa (https://

www.encodeproject.org/biosamples/ENCBS312UTV/) (Korch et al. 2012).
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we considered this a candidate-gene study. The consist-

ency of SNP association with endometrial cancer risk

between the four studies gives us confidence in this

finding. Using tagger (de Bakker et al. 2005), 246 SNPs

were calculated to be required to tag our region of interest

by pairwise-tagging (r2R0.5). The most strongly associated

SNP had a P value an order of magnitude smaller than

the Bonferroni-adjusted significance threshold based on

the number of independent SNPs at the locus (P for

significanceZ0.05/246Z2.0!10K4). Notably, there was

a more significant association for the endometrioid

histology subtype which is well-established to be estrogen

driven (Kaaks et al. 2002).
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0319 Printed in Great Britain
Neither SNP rs79575945, nor any other in the risk-

associated SNP set, has been previously reported to be

associated with endometrial cancer risk. Reported associ-

ated SNPs from smaller candidate studies investigating the

effect of genetic variation at the ESR1 locus on endometrial

cancer risk are not in LD (r2!0.2) with rs79575945 and

were not validated in our larger study (Table 1).

SNPs associated with multiple phenotypes have been

mapped to the ESR1 locus, notably breast cancer (Zheng

et al. 2009, Turnbull et al. 2010, Hein et al. 2012), which

shares many risk factors with endometrial cancer, and age-

of-menarche (Perry et al. 2014) and bone mineral density

(Estrada et al. 2012), which are both associated with
Published by Bioscientifica Ltd.
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estrogen exposure. However, none of the SNPs reported by

these studies are correlated with any of the variants found

to be associated with endometrial cancer risk (r2!0.2).

The lack of overlap between risk variants for endometrial

cancer, breast cancer and risk factors associated with

estrogen exposure suggest that while these risks could be

mediated through the same target gene, they are working

via different regulatory mechanisms in different cell types.

Using log-likelihood ratios and LD, we have identified

47 candidate causal variants located at a potential

alternative promoter of ESR1, represented by lead SNP

rs79575945. Bioinformatics data provide evidence that

these variants reside within a putative regulatory element

for ESR1 and/or other genes in this region. By cross-

referencing the catalogue created using 86 cell lines by

Hnisz et al. (2013), we also provide evidence that candidate

causal variants lie in a region encompassing super-

enhancers that target ESR1. Super-enhancers consist of

large clusters of transcriptional enhancers and are associ-

ated with genes that control and define cell identity (Loven

et al. 2013, Whyte et al. 2013). The presence of super-

enhancers overlapping the candidate causal variants

indicates the functional importance of this region. Four

candidate causal variants were predicted to alter transcrip-

tion factor binding by two independent programs, is-rSNP

(Macintyre et al. 2010) and HaploReg (Ward & Kellis 2012).

However, none of these transcription factors identified

have been examined by ENCODE. There was evidence of

binding of transcription factors TAF1, NFIC, TCF12, p300,

TEAD4 and FOXM1 overlapping candidate causal SNPs in

Ishikawa cells by ENCODE. However, the binding of these

transcription factors were not found to be altered by the

candidate causal SNPs using is-rSNP and HaploReg. Given

transcription factor binding frequently occurs in the

absence of a known motif (Kheradpour & Kellis 2014),

SNP effects may not have been correctly assessed in this

analysis. Functional analysis would therefore be required

to assess the impact of these SNPs on transcription factor

binding. Using data from HaploReg alone, candidate causal

SNP rs9340770 was predicted to alter binding of p300 and

ENCODE data indicates that rs9340770 is in a region bound

by p300 in Ishikawa cells. SNP rs9340770 is located

upstream of an alternative transcript for ESR1, and the

binding of p300 suggests this could be a putative promoter

for these transcripts. Further functional work is required

to uncover whether this SNP is affecting the expression of

these alternative transcripts by disrupting p300 binding.

Although predicted to be the target gene bioinforma-

tically, eQTL analysis using TCGA data did not find the

candidate causal SNPs to be significantly associated with
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0319 Printed in Great Britain
ESR1 expression. This is in line with previous fine-

mapping studies performed for breast cancer, where

candidate causal variants have not been found to act as

eQTLs for predicted target genes in breast tissue samples

(Ghoussaini et al. 2014, Glubb et al. 2015). The reason for

this is unclear. It is possible that the effect of candidate

SNPs on expression levels cannot always be detected in

tumour tissue due to tissue-heterogeneity. Furthermore,

eQTLs are context-dependent and might only be

expressed in certain stages of cancer development, or

only when under particular stimuli.

We did find candidate causal SNPs to be significantly

associated with spectrin repeat containing, nuclear envel-

ope 1 (SYNE1) expression in endometrioid endometrial

cancer tissue. SYNE1 encodes Nesprin-1 which is reported

to be involved in a variety of cellular processes, including

Golgi and nucleus organization and cytokinesis (Zhang

et al. 2001, Gough et al. 2003, Fan & Beck 2004). Genetic

variation in SYNE1 has been reported to be associated with

increased risk of invasive ovarian cancer (Doherty et al.

2010). SYNE1 is frequently methylated in lung adeno-

carcinoma and colorectal cancer (Schuebel et al. 2007,

Tessema et al. 2008) and mutations in SYNE1 have been

reported in colorectal cancer (Sjoblom et al. 2006).

Downregulation of an N-terminal isoform of Nesprin-1,

Drop1, has been observed in cancers of the uterus, cervix,

kidney, thyroid, pancreas and lung (Marme et al. 2008).

Interestingly, a recent study has indicated a role for

Nesprin-1 in the DNA damage response pathway, and

identified Nesprin-1 as interacting with mismatch repair

proteins MSH2 and MSH6 (Sur et al. 2014). Given that

mismatch repair deficiency is observed in up to 30% of

endometrial tumours (Kanaya et al. 2003), and the eQTL

data from our study, the role of SYNE1 in endometrial

cancer should be explored further.

In conclusion, we have identified a single endometrial

cancer risk signal, at study-wide significance, located

within a potential alternative promoter for ESR1. Lead

SNP, rs79575945 is also reported to be associated with

expression of SYNE1, adjacent to ESR1. Given SNPs at this

locus have previously been identified as predisposing to

breast cancer, also a hormonally driven cancer, this study

adds weight to the rationale for performing informed

candidate fine-scale genetic studies across cancer types

(Carvajal-Carmona et al. 2015).
Supplementary data

This is linked to the online version of the paper at http://dx.doi.org/10.1530/

ERC-15-0319.
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