238 research outputs found
Migalastat HCl reduces globotriaosylsphingosine (lyso-Gb3) in Fabry transgenic mice and in the plasma of Fabry patients
Fabry disease (FD) results from mutations in the gene ( GLA ) that encodes the lysosomal enzyme α-galactosidase A (α-Gal A), and involves pathological accumulation of globotriaosylceramide (GL-3) and globotriaosylsphingosine (lyso-Gb 3 ). Migalastat hydrochloride (GR181413A) is a pharmacological chaperone that selectively binds, stabilizes, and increases cellular levels of α-Gal A. Oral administration of migalastat HCl reduces tissue GL-3 in Fabry transgenic mice, and in urine and kidneys of some FD patients. A liquid chromatography-tandem mass spectrometry method was developed to measure lyso-Gb 3 in mouse tissues and human plasma. Oral administration of migalastat HCl to transgenic mice reduced elevated lyso-Gb 3 levels up to 64%, 59%, and 81% in kidney, heart, and skin, respectively, generally equal to or greater than observed for GL-3. Furthermore, baseline plasma lyso-Gb 3 levels were markedly elevated in six male FD patients enrolled in Phase 2 studies. Oral administration of migalastat HCl (150 mg QOD) reduced urine GL-3 and plasma lyso-Gb 3 in three subjects (range: 15% to 46% within 48 weeks of treatment). In contrast, three showed no reductions in either substrate. These results suggest that measurement of tissue and/or plasma lyso-Gb 3 is feasible and may be warranted in future studies of migalastat HCl or other new potential therapies for FD
Multiple Lineages of Human Breast Cancer Stem/Progenitor Cells Identified by Profiling with Stem Cell Markers
Heterogeneity of cancer stem/progenitor cells that give rise to different forms of cancer has been well demonstrated for leukemia. However, this fundamental concept has yet to be established for solid tumors including breast cancer. In this communication, we analyzed solid tumor cancer stem cell markers in human breast cancer cell lines and primary specimens using flow cytometry. The stem/progenitor cell properties of different marker expressing-cell populations were further assessed by in vitro soft agar colony formation assay and the ability to form tumors in NOD/SCID mice. We found that the expression of stem cell markers varied greatly among breast cancer cell lines. In MDA-MB-231 cells, PROCR and ESA, instead of the widely used breast cancer stem cell markers CD44+/CD24-/low and ALDH, could be used to highly enrich cancer stem/progenitor cell populations which exhibited the ability to self renew and divide asymmetrically. Furthermore, the PROCR+/ESA+ cells expressed epithelial-mesenchymal transition markers. PROCR could also be used to enrich cells with colony forming ability from MB-361 cells. Moreover, consistent with the marker profiling using cell lines, the expression of stem cell markers differed greatly among primary tumors. There was an association between metastasis status and a high prevalence of certain markers including CD44+/CD24−/low, ESA+, CD133+, CXCR4+ and PROCR+ in primary tumor cells. Taken together, these results suggest that similar to leukemia, several stem/progenitor cell-like subpopulations can exist in breast cancer
Investigation of Hepatoprotective Activity of Induced Pluripotent Stem Cells in the Mouse Model of Liver Injury
To date liver transplantation is the only effective treatment for end-stage liver diseases. Considering the potential of pluripotency and differentiation into tridermal lineages, induced pluripotent stem cells (iPSCs) may serve as an alternative of cell-based therapy. Herein, we investigated the effect of iPSC transplantation on thioacetamide- (TAA-) induced acute/fulminant hepatic failure (AHF) in mice. Firstly, we demonstrated that iPSCs had the capacity to differentiate into hepatocyte-like cells (iPSC-Heps) that expressed various hepatic markers, including albumin, α-fetoprotein, and hepatocyte nuclear factor-3β, and exhibited biological functions. Intravenous transplantation of iPSCs effectively reduced the hepatic necrotic area, improved liver functions and motor activity, and rescued TAA-treated mice from lethal AHF. 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate cell labeling revealed that iPSCs potentially mobilized to the damaged liver area. Taken together, iPSCs can effectively rescue experimental AHF and represent a potentially favorable cell source of cell-based therapy
Migalastat HCl reduces globotriaosylsphingosine (Lyso- Gb3) in Fabry transgenic mice and in the plasma of Fabry patients
Fabry disease (FD) results from mutations in the gene (GLA) that encodes the lysosomal enzyme a-galactosidase A (a-Gal A), and involves pathological accumulation of globotriaosylceramide (GL-3) and globotriaosylsphingosine (lyso-Gb3). Migalastat hydrochloride (GR181413A) is a pharmacological chaperone that selectively binds, stabilizes, and increases cellular levels of a-Gal A. Oral administration of migalastat HCl reduces tissue GL-3 in Fabry transgenic mice, and in urine and kidneys of some FD patients. A liquid chromatography-tandem mass spectrometry method was developed to measure lyso-Gb3 in mouse tissues and human plasma. Oral administration of migalastat HCl to transgenic mice reduced elevated lyso-Gb3 levels up to 64%, 59%, and 81% in kidney, heart, and skin, respectively, generally equal to or greater than observed for GL-3. Furthermore, baseline plasma lyso-Gb3 levels were markedly elevated in six male FD patients enrolled in Phase 2 studies. Oral administration of migalastat HCl (150 mg QOD) reduced urine GL-3 and plasma lyso-Gb3 in three subjects (range: 15% to 46% within 48 weeks of treatment). In contrast, three showed no reductions in either substrate. These results suggest that measurement of tissue and/or plasma lyso-Gb3 is feasible and may be warranted in future studies of migalastat HCl or other new potential therapies for FD
YC-1 [3-(5Ј-Hydroxymethyl-2Ј-furyl)-1-benzyl Indazole] Inhibits Neointima Formation in Balloon-Injured Rat Carotid through Suppression of Expressions and Activities of Matrix Metalloproteinases 2 and 9
ABSTRACT Matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, and postrevascularization production of vascular smooth muscle cells may play key roles in development of arterial restenosis. We investigated the inhibitory effect of 3-(5Ј-hydroxymethyl-2Ј-furyl)-1-benzyl indazole (YC-1), a benzyl indazole compound, on MMP-2 and MMP-9 activity in a ballooninjury rat carotid artery model. Injury was induced by inserting a balloon catheter through the common carotid artery; after 14 days, histopathological analysis using immunostaining and Western blotting revealed significant restenosis with neointimal formation that was associated with enhanced protein expression of MMP-2 and MMP-9. However, these effects were dosedependently reduced by orally administered YC-1 (1-10 mg/ kg). In addition, gelatin zymography demonstrated that increased MMP-2 and MMP-9 activity was diminished by YC-1 treatment. On the other hand, YC-1 inhibited hydrolysis of the fluorogenic quenching substrate Mca-Pro-Leu-Gly-Leu-DpaAla-Arg-NH 2 by recombinant MMP-2 and MMP-9 with IC 50 values ϭ 2.07 and 8.20 M, respectively. Reverse transcription-polymerase chain reaction analysis of MMP-2 and MMP-9 mRNA revealed that YC-1 significantly inhibited mRNA levels of MMPs. Finally, for the YC-1 treatment group, we did not observe elevation of cGMP levels using enzyme-linked immunosorbent assay, suggesting that YC-1 inhibition of neointimal formation is not through a cGMP-elevating pathway. These data show YC-1 suppression of neointimal formation is dependent on its influence on MMP-2 and MMP-9 protein, mRNA expression, and activity, but not through a cGMP-elevating effect. YC-1 shows therapeutic potential for treatment of restenosis after angioplasty. During the past 20 years, one focus of cardiovascular pharmaceutical research has been the development of drugs that inhibit intimal hyperplasia. Despite many attempts, no clinical trial has proven that there is an effective pharmacological solution to the problem Matrix metalloproteinases (MMPs) are a family of structurally related zinc-endopeptidases that degrade components of extracellular matrix associated with vascular remodeling during vascular injury-induced neointima formatio
Angiogenesis inhibitor therapies for advanced renal cell carcinoma: Toxicity and treatment patterns in clinical practice from a global medical chart review
The aim of this study was to assess the treatment patterns and safety of sunitinib, sorafenib and bevacizumab in real-world clinical settings in US, Europe and Asia. Medical records were abstracted at 18 community oncology clinics in the US and at 21 tertiary oncology centers in US, Europe and Asia for 883 patients ≥18 years who had histologically/cytologically confirmed diagnosis of advanced RCC and received sunitinib (n=631), sorafenib (n=207) or bevacizumab (n=45) as first‑line treatment. No prior treatment was permitted. Data were collected on all adverse events (AEs) and treatment modifications, including discontinuation, interruption and dose reduction. Treatment duration was estimated using Kaplan-Meier analysis. Demographics were similar across treatment groups and regions. Median treatment duration ranged from 6.1 to 10.7 months, 5.1 to 8.5 months and 7.5 to 9.8 months for sunitinib, sorafenib and bevacizumab patients, respectively. Grade 3/4 AEs were experienced by 26.0, 28.0 and 15.6% of sunitinib, sorafenib and bevacizumab patients, respectively. Treatment discontinuations occurred in 62.4 (Asia) to 63.1% (US) sunitinib, 68.8 (Asia) to 90.0% (Europe) sorafenib, and 66.7 (Asia) to 81.8% (US) bevacizumab patients. Globally, treatment modifications due to AEs occurred in 55.1, 54.2 and 50.0% sunitinib, sorafenib and bevacizumab patients, respectively. This study in a large, global cohort of advanced RCC patients found that angiogenesis inhibitors are associated with high rates of AEs and treatment modifications. Findings suggest an unmet need for more tolerable agents for RCC treatment
The genome sequence of the orchid Phalaenopsis equestris
Orchidaceae, renowned for its spectacular flowers and other reproductive and ecological adaptations, is one of the most diverse plant families. Here we present the genome sequence of the tropical epiphytic orchid Phalaenopsis equestris, a frequently used parent species for orchid breeding. P. equestris is the first plant with crassulacean acid metabolism (CAM) for which the genome has been sequenced. Our assembled genome contains 29,431 predicted protein-coding genes. We find that contigs likely to be underassembled, owing to heterozygosity, are enriched for genes that might be involved in self-incompatibility pathways. We find evidence for an orchid-specific paleopolyploidy event that preceded the radiation of most orchid clades, and our results suggest that gene duplication might have contributed to the evolution of CAM photosynthesis in P. equestris. Finally, we find expanded and diversified families of MADS-box C/D-class, B-class AP3 and AGL6-class genes, which might contribute to the highly specialized morphology of orchid flowers. (Résumé d'auteur
Does firm size matter? Evidence on the impact of the green innovation strategy on corporate financial performance in the automotive sector
In the past few years, there has been increasing awareness regarding the significance of the Green Innovation Strategy (GIS) in the academic and practical fields. Hence, it becomes important to determine the correlation between the GIS and the Corporate Financial Performance (CFP). This study attempted to determine the dynamic correlation between the GIS and the CFP, with regards to the firm size. For this purpose, this study has collected data for 163 international automotive firms, from the CSRHub database, for the period ranging between 2011 and 2017. Furthermore, we also used the dynamic panel data system, i.e., the Generalised Method of Moment (GMM) method, for estimating this relationship. The empirical results indicated that the GIS positively affected the CFP. Interestingly, we also uncovered that the firm size moderated the negative correlation between the GIS and the CFP. The small-sized firms showed higher green innovation investments return than the larger-sized firms, which indicated that these smaller firms were more prone to seek variation and visibility, for accessing better resources. Furthermore, due to the extensive scrutiny of the stakeholders, these small firms could generate higher profits. The implications for managers and the theories in this regard are then discussed
- …