605 research outputs found

    HAC stability in murine cells is influenced by nuclear localization and chromatin organization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human artificial chromosomes (HAC) are small functional extrachromosomal elements, which segregate correctly during each cell division. In human cells, they are mitotically stable, however when the HAC are transferred to murine cells they show an increased and variable rate of loss. In some cell lines the HAC are lost over a short period of time, while in others the HAC become stable without acquiring murine DNA.</p> <p>Results</p> <p>In this study, we linked the loss rate to the position of the HAC in the murine cell nucleus with respect to the chromocenters. HAC that associated preferentially with the chromocenter displayed a lower loss rate compared to the HAC that are less frequently associated. The chromocenter acts as a hub for the deposition of heterochromatic markers, controlling centromeric and pericentromeric DNA replication timing and chromosome segregation. The HAC which localized more frequently outside the chromocenters bound variable amounts of histone H3 tri-methylated at lysine 9, and the high level of intraclonal variability was associated with an increase in HAC segregation errors and delayed DNA replication timing.</p> <p>Conclusion</p> <p>This is a novel result indicating that HAC segregation is closely linked to the position in the murine nucleus and gives important insight for HAC gene expression studies in murine cells and establishing murine models of human genetic disease.</p

    HAC stability in murine cells is influenced by nuclear localization and chromatin organization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human artificial chromosomes (HAC) are small functional extrachromosomal elements, which segregate correctly during each cell division. In human cells, they are mitotically stable, however when the HAC are transferred to murine cells they show an increased and variable rate of loss. In some cell lines the HAC are lost over a short period of time, while in others the HAC become stable without acquiring murine DNA.</p> <p>Results</p> <p>In this study, we linked the loss rate to the position of the HAC in the murine cell nucleus with respect to the chromocenters. HAC that associated preferentially with the chromocenter displayed a lower loss rate compared to the HAC that are less frequently associated. The chromocenter acts as a hub for the deposition of heterochromatic markers, controlling centromeric and pericentromeric DNA replication timing and chromosome segregation. The HAC which localized more frequently outside the chromocenters bound variable amounts of histone H3 tri-methylated at lysine 9, and the high level of intraclonal variability was associated with an increase in HAC segregation errors and delayed DNA replication timing.</p> <p>Conclusion</p> <p>This is a novel result indicating that HAC segregation is closely linked to the position in the murine nucleus and gives important insight for HAC gene expression studies in murine cells and establishing murine models of human genetic disease.</p

    The Intestinal Copper Exporter CUA-1 Is Required for Systemic Copper Homeostasis in Caenorhabditis elegans

    Get PDF
    Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson’s disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans. Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways

    Transcription Factor Nrf1 Mediates the Proteasome Recovery Pathway after Proteasome Inhibition in Mammalian Cells

    Get PDF
    In Saccharomyces cerevisiae, chemical or genetic inhibition of proteasome activity induces new proteasome synthesis promoted by the transcription factor RPN4. This ensures that proteasome activity is matched to demand. This transcriptional feedback loop is conserved in mammals, but its molecular basis is not understood. Here, we report that nuclear factor erythroid-derived 2-related factor 1 (Nrf1), a transcription factor of the cap “n” collar basic leucine zipper family, but not the related Nrf2, is necessary for induced proteasome gene transcription in mouse embryonic fibroblasts (MEFs). Promoter-reporter assays revealed the importance of antioxidant response elements in Nrf1-mediated upregulation of proteasome subunit genes. Nrf1^(−/−) MEFs were impaired in the recovery of proteasome activity after transient treatment with the covalent proteasome inhibitor YU101, and knockdown of Nrf1 in human cancer cells enhanced cell killing by YU101. Taken together, our results suggest that Nrf1-mediated proteasome homeostasis could be an attractive target for therapeutic intervention in cancer

    Nrf2 is essential for timely M phase entry of replicating hepatocytes during liver regeneration

    Get PDF
    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates various cellular activities, including redox balance, detoxification, metabolism, autophagy, proliferation, and apoptosis. Several studies have demonstrated that Nrf2 regulates hepatocyte proliferation during liver regeneration. The aim of this study was to investigate how Nrf2 modulates the cell cycle of replicating hepatocytes in regenerating livers. Wild-type and Nrf2 null mice were subjected to 2/3 partial hepatectomy (PH) and killed at multiple time points for various analyses. Nrf2 null mice exhibited delayed liver regrowth, although the lost liver mass was eventually restored 7 days after PH. Nrf2 deficiency did not affect the number of hepatocytes entering the cell cycle but did delay hepatocyte mitosis. Mechanistically, the lack of Nrf2 resulted in increased mRNA and protein levels of hepatic cyclin A2 when the remaining hepatocytes were replicating in response to PH. Moreover, Nrf2 deficiency in regenerating livers caused dysregulation of Wee1, Cdc2, and cyclin B1 mRNA and protein expression, leading to decreased Cdc2 activity. Thus, Nrf2 is required for timely M phase entry of replicating hepatocytes by ensuring proper regulation of cyclin A2 and the Wee1/Cdc2/cyclin B1 pathway during liver regeneration

    Cooperative activity of DNA methyltransferases for maintenance of symmetrical and non-symmetrical cytosine methylation in Arabidopsis thaliana

    Get PDF
    Maintenance of cytosine methylation in plants is controlled by three DNA methyltransferases. MET1 maintains CG methylation, and DRM1/2 and CMT3 act redundantly to enforce non-CG methylation. RPS, a repetitive hypermethylated DNA fragment from Petunia hybrida, attracts DNA methylation when transferred into Petunia or other species. In Arabidopsis thaliana, which does not contain any RPS homologues, RPS transgenes are efficiently methylated in all sequence contexts. To test which DNA methylation pathways regulate RPS methylation, we examined maintenance of RPS methylation in various mutant backgrounds. Surprisingly, CG methylation was lost in a drm1/2/cmt3 mutant, and non-CG methylation was almost completely eliminated in a met1 mutant. An unusual cooperative activity of all three DNA methyltransferases is therefore required for maintenance of both CG and non-CG methylation in RPS. Other unusual features of RPS methylation are the independence of its non-CG methylation from the RNA-directed DNA methylation (RdDM) pathway and the exceptional maintenance of methylation at a CCmTGG site in some epigenetic mutants. This is indicative of activity of a methylation system in plants that may have evolved from the DCM methylation system that controls CCmWGG methylation in bacteria. Our data suggest that strict separation of CG and non-CG methylation pathways does not apply to all target regions, and that caution is required in generalizing methylation data obtained for individual genomic regions

    The promoter from SlREO, a highly-expressed, root-specific Solanum lycopersicum gene, directs expression to cortex of mature roots

    Get PDF
    Root-specific promoters are valuable tools for targeting transgene expression, but many of those already described have limitations to their general applicability. We present the expression characteristics of SlREO, a novel gene isolated from tomato (Solanum lycopersicum L.). This gene was highly expressed in roots but had a very low level of expression in aerial plant organs. A 2.4-kb region representing the SlREO promoter sequence was cloned upstream of the uidA GUS reporter gene and shown to direct expression in the root cortex. In mature, glasshouse-grown plants this strict root specificity was maintained. Furthermore, promoter activity was unaffected by dehydration or wounding stress but was somewhat suppressed by exposure to NaCl, salicylic acid and jasmonic acid. The predicted protein sequence of SlREO contains a domain found in enzymes of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. The novel SlREO promoter has properties ideal for applications requiring strong and specific gene expression in the bulk of tomato root tissue growing in soil, and is also likely to be useful in other Solanaceous crop

    Long Isoforms of NRF1 Contribute to Arsenic-Induced Antioxidant Response in Human Keratinocytes

    Get PDF
    BACKGROUND: Human exposure to inorganic arsenic (iAs), a potent oxidative stressor, causes various dermal disorders, including hyperkeratosis and skin cancer. Nuclear factor-erythroid 2-related factor 1 (NRF1, also called NFE2L1) plays a critical role in regulating the expression of many antioxidant response element (ARE)-dependent genes. OBJECTIVES: We investigated the role of NRF1 in arsenic-induced antioxidant response and cytotoxicity in human keratinocytes. RESULTS: In cultured human keratinocyte HaCaT cells, inorganic arsenite (iAs(3+)) enhanced the protein accumulation of long isoforms (120-140 kDa) of NRF1 in a dose-and time-dependent fashion. These isoforms accumulated mainly in the nuclei of HaCaT cells. Selective deficiency of NRF1 by lentiviral short-hairpin RNAs in HaCaT cells [NRF1-knockdown (KD)] led to decreased expression of gamma-glutamate cysteine ligase catalytic subunit (GCLC) and regulatory subunit (GCLM) and a reduced level of intra-cellular glutathione. In response to acute iAs(3+) exposure, induction of some ARE-dependent genes, including NAD(P)H:quinone oxidoreductase 1 (NQO1), GCLC, and GCLM, was significantly attenuated in NRF1-KD cells. However, the iAs(3)-induced expression of heme oxygenase 1 (HMOX-1) was unaltered by silencing NRF1, suggesting that HMOX-1 is not regulated by NRF1. In addition, the lack of NRF1 in HaCaT cells did not disturb iAs(3+)-induced NRF2 accumulation but noticeably decreased Kelch-like ECH-associated protein 1 (KEAP1) levels under basal and iAs(3+)-exposed conditions, suggesting a potential interaction between NRF1 and KEAP1. Consistent with the critical role of NRF1 in the transcriptional regulation of some ARE-bearing genes, knockdown of NRF1 significantly increased iAs(3+)-induced cytotoxicity and apoptosis. CONCLUSIONS: Here, we demonstrate for the first time that long isoforms of NRF1 contribute to arsenic-induced antioxidant response in human keratinocytes and protect the cells from acute arsenic cytotoxicity
    corecore