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Copper plays key catalytic and regulatory roles in biochemical
processes essential for normal growth, development, and health.
Defects in copper metabolism cause Menkes and Wilson’s
disease, myeloneuropathy, and cardiovascular disease and are
associated with other pathophysiological states. Consequently,
it is critical to understand the mechanisms by which organisms
control the acquisition, distribution, and utilization of copper.
The intestinal enterocyte is a key regulatory point for copper
absorption into the body; however, the mechanisms by which
intestinal cells transport copper to maintain organismal copper
homeostasis are poorly understood. Here, we identify a mecha-
nism by which organismal copper homeostasis is maintained
by intestinal copper exporter trafficking that is coordinated
with extraintestinal copper levels in Caenorhabditis elegans.
Specifically, we show that CUA-1, the C. elegans homolog of
ATP7A/B, localizes to lysosome-like organelles (gut granules)
in the intestine under copper overload conditions for copper
detoxification, whereas copper deficiency results in a redistribu-
tion of CUA-1 to basolateral membranes for copper efflux to
peripheral tissues. Worms defective in gut granule biogenesis
exhibit defects in copper sequestration and increased suscepti-
bility to toxic copper levels. Interestingly, however, a splice iso-
form CUA-1.2 that lacks a portion of the N-terminal domain
is targeted constitutively to the basolateral membrane irre-
spective of dietary copper concentration. Our studies estab-
lish that CUA-1 is a key intestinal copper exporter and that its
trafficking is regulated to maintain systemic copper homeo-
stasis. C. elegans could therefore be exploited as a whole-an-
imal model system to study regulation of intra- and intercel-
lular copper trafficking pathways.

Copper is essential for catalytic and regulatory functions in a
wide range of biochemical reactions involved in mitochondrial
respiration, connective tissue formation, and iron metabolism

(1, 2). Copper deficiency is associated with pathologies that
include anemia, neutropenia, and cardiomyopathy (1, 3). Addi-
tionally, if its homeostasis is not properly regulated, copper can
be extremely toxic due to its stimulation of free radical produc-
tion. Organisms finely tune copper homeostasis through a
combination of absorption, distribution, and efflux in multiple
tissues. In many species, a key aspect of copper homeostasis is
facilitated by membrane-bound copper efflux pumps. Mam-
mals have two primary copper exporters that are structurally
related, ATP7A and ATP7B P-type ATPases. In tissue culture
models, both of these proteins deliver copper to the lumen of
the secretory machinery for incorporation into various copper-
dependent enzymes at basal or low intracellular copper con-
centrations. At elevated cellular copper levels, ATP7A traffics
to the plasma membrane to remove excess copper from cells,
and ATP7B relocates to the plasma membrane and endosomes
to excrete copper (2, 4). In humans, mutations in the genes
encoding ATP7A and ATP7B result in severe systemic copper
deficiency (Menkes disease) and hepatic/neuronal hyperaccu-
mulation of copper (Wilson’s disease), respectively (1). How-
ever, to date, copper-responsive steady-state distributions of
ATP7A/B have been studied predominantly at the cellular level
in tissue culture models, and regulation of their trafficking by
dietary copper has not yet been thoroughly elucidated within an
intact animal model (4 – 6).

Although the optically transparent roundworm Caenorhab-
ditis elegans has emerged as a highly amenable model of micro-
nutrient metabolism (7–9), the C. elegans model system has
been relatively unexploited for questions related to copper
homeostasis, despite the fact that these worms have a defined
and highly versatile intestinal capacity for nutrient absorption
(10 –12). For these reasons, we utilized C. elegans, which has
been widely used in the study of the metabolism of other metals,
including iron, heme, and zinc (8, 13–17). Although mammals
have two copper exporters, serving complementary functions
in different tissues such as the gut and liver, lower metazoans
(including nematodes (C. elegans) and insects (Drosophila
melanogaster)) have only a single homolog of ATP7A/B (2, 18,
19). The protein product of C. elegans cua-1 shares very high
sequence similarity with human ATP7A/B. Previous studies
have used yeast to demonstrate that cua-1 has copper efflux
functions, as the gene encoding C. elegans CUA-1 could rescue
a yeast strain lacking the CCC2 gene, which encodes a func-
tional counterpart (20). In worms, transcriptional reporters
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have been used to detect cua-1 expression in several tissues,
including the intestine. An essential role for cua-1 for copper
transport in C. elegans has been suggested, as deletion of cua-1
results in embryonic lethality (18, 21). However, how CUA-1 in
the intestine responds to systemic copper status is not under-
stood, and its intracellular location and copper responsiveness
have not been determined.

Here, we report the importance of copper in C. elegans devel-
opment and a distinct role for CUA-1 in mediating copper
transport. Expression of cua-1 specifically in the intestine is
sufficient to rescue the embryonic lethal phenotype of the cua-1
mutant. A CUA-1 translational fusion protein primarily local-
izes to the basolateral membrane of the intestine under basal
and copper-deficient conditions but redistributes to lysosome-
related organelles (gut granules) in response to elevated copper
levels in the diet. Moreover, copper injection into the pseudo-
coelom, a fluid-filled body cavity between the intestine and the
body wall, leads to a significant endosomal re-localization of
intestinal CUA-1 even in dietary copper-deprived worms. Our
studies show that intestinal CUA-1 is a key component regulat-
ing copper supply and detoxification to maintain systemic cop-
per homeostasis in the intact animal.

Results

Dietary Copper Levels Affect Worm Growth—Living organ-
isms have an optimal range of copper concentrations, and die-
tary excess or deficiency of copper causes various diseases and
developmental defects in a broad range of organisms (1, 2). To
determine the dietary copper requirements of C. elegans grown

on NGM2 plates fed with the Escherichia coli strain OP50, we
followed worm growth over 8 days under copper restriction
using the copper(I)-specific chelator bathocuproinedisulfonic
acid (BCS) or with copper supplementation using CuCl2.
Worm growth showed a biphasic curve over dietary copper
levels (Fig. 1A). C. elegans displayed maximal growth in the low
micromolar range of supplemental copper and impaired
growth at either end of the copper spectrum, 100 �M BCS and
150 �M copper, with smaller brood size and delayed develop-
ment. Large amounts of copper (�200 �M) resulted in growth
arrest at the L3 stage, likely due to copper toxicity. Monitoring
of animal development revealed that at optimal copper (�2
�M), worms became gravid adults in 3 days, whereas most ani-
mals grown at high or low copper conditions only reached the
L3 to young adult stage at this time point (Fig. 1B).

To quantify the effect of dietary copper on each animal
within a mixed population, we used a COPAS Biosort instru-
ment. Animal development was significantly delayed by supple-
mentation of high doses of either copper or BCS (Fig. 1C). To
complement the analysis of how dietary copper influences
worm growth, whole-animal copper content was measured
using inductively coupled plasma-mass spectrometry (ICP-
MS). Worms cultured with high copper (150 �M) had only a
5-fold increase in copper content as compared with animals
grown on 10 �M copper supplementation, whereas the relative

2 The abbreviations used are: NGM, nematode growth medium; MEF, mouse
embryonic fibroblast; BCS, bathocuproinedisulfonic acid; ICP-MS, induc-
tively coupled plasma MS; CCS, copper chaperone for superoxide dismu-
tase; ANOVA, analysis of variance; qRT, quantitative RT.

FIGURE 1. Growth of C. elegans is affected by dietary copper. A, population growth rates of wild-type N2 worms cultured in the presence of increasing
amounts of CuCl2 or BCS on NGM dishes. Fifty synchronized L1 stage worms were grown on 10-cm plates for 8 days under specified conditions and quantified
by microscopy. Error bars are mean � S.E. of three independent experiments. B, synchronized L1 worms were cultured on plates supplemented with different
levels of copper or BCS for 3 days. Representative differential interference contrast images of worms 3 days post-hatch are shown. Scale bar, 50 �m. C,
synchronized L1 larvae grown on NGM plates for 2.5 days were sorted by a COPAS Biosort. Time of flight (TOF) and extinction (EXT) denote the length and
optical density (width) of worms, respectively. D, total copper levels of L4 stage wild-type worms grown on agar plates with varying levels of dietary copper
were determined by ICP-MS. Error bars indicate mean � S.E. of 3– 6 independent experiments, and different letters indicate significantly different means (p �
0.05) (one-way ANOVA, Tukey’s post hoc test) (see also supplemental Fig. S1, A and B).
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ratio of supplemental copper concentrations (15-fold) is higher,
implying the existence of a homeostatic regulatory mechanism
for maintaining optimal copper levels in C. elegans (Fig. 1D).
BCS treatment resulted in �40% reduction in total copper con-
tent as compared with no supplementation. No significant
changes in iron and zinc content were observed in worms
treated with copper or BCS (supplemental Fig. S1, A and B).
Collectively, these data indicate that dietary copper levels
impact growth and development within one generation in
C. elegans.

CUA-1 Is Essential for Larval Development in C. elegans—
Although vertebrates have two copper exporters, unicellular
organisms and invertebrates have a single copper exporter, sug-
gesting that the copper exporter gene duplication to ATP7A
and ATP7B occurred following the branching off of the verte-
brate phyla (supplemental Fig. S2, A and B). In worms, cua-1
encodes a putative copper exporter (20), which shares about
45% sequence identity at the amino acid level with human
ATP7A and ATP7B. Importantly, the motifs known to be
essential for copper transport and protein trafficking in the
human ATP7A/B are highly conserved in CUA-1 (Fig. 2B and
supplemental Fig. S2B). The genomic structure of cua-1 con-

sists of 16 exons, and it is predicted to encode two splice iso-
forms. The first isoform, cua-1.1 (Y76A2A.2a), contains all
exons, whereas the cua-1.2 (Y76A2A.2b) isoform lacks the first
two exons, which encode the first metal-binding domain (Fig. 2,
A and B).

To ascertain the physiological function of cua-1, worms
were analyzed for growth and developmental phenotypes after
knockdown of cua-1. Without copper supplementation, ani-
mals treated with cua-1 RNAi at the L1 stage became gravid
adults in 4 days but failed to lay eggs. For worms grown in the
presence of 100 �M BCS, treatment with cua-1 RNAi resulted in
near total lethality, whereas vector control worms only showed
a delayed F1 hatching (Fig. 2C). Together, these results indicate
that cua-1 is required for normal growth in C. elegans. To fur-
ther explore the importance of cua-1 in fecundity, total brood
size was quantified. Regardless of RNAi conditions, addition of
100 �M BCS resulted in reduced brood sizes, indicating that
dietary copper uptake is essential for normal reproduction
(Fig. 2D). In mammals, cytosolic copper is delivered to either
ATP7A or ATP7B by the copper chaperone ATOX1. In
C. elegans, CUC-1 is a putative ATOX1 homolog that has been
previously identified by yeast complementation assay (18).

FIGURE 2. cua-1 is required for larval development under low copper conditions. A, schematic diagram of the C. elegans cua-1 gene. The straight line
indicates genomic DNA on C. elegans chromosome III. The cua-1.2 transcript lacks the first two exons as compared with the full-length cua-1.1 isoform. B,
predicted CUA-1 membrane topology. Domains required for copper transport activity, including metal-binding sites, a phosphatase domain, a CPC motif
(Cys-Pro-Cys), a phosphorylation domain, an ATP-binding motif, and a dileucine-based sorting signal present in human ATP7A/B are highly conserved in
CUA-1. The genomic regions of cua-1 that are deleted in the ok904 allele are shown in the red box, and the N-terminal truncation in CUA-1.2 is shown in the blue
box. C, L1 worms were exposed to RNAi for 4 days with or without 100 �M BCS treatment; representative microscope images are shown. Note that cua-1 RNAi
used in this study targets the last two exons of both cua-1.1 and cua-1.2. Arrowhead indicates eggs that have already been laid. D, L4 larval stage worms grown
under varying RNAi and BCS conditions were picked to individual plates, allowed to lay eggs, and transferred to fresh plates every 24 h for 3 days. Eggs were
counted for each brood treatment, and progeny number for each brood was determined as the sum of total eggs and larvae, n � 5 (two-way ANOVA, Tukey’s
post hoc test). Error bars represent average � S.E. Values with different letters are significantly different from each other (p � 0.05). E, wild-type P0 animals were
precultured for 3 days on NGM plates containing 0 or 10 �M supplemental copper, and synchronized F1 progeny were cultured from the L1 stage for 2 days on
plates with the indicated levels of BCS. TOF was determined by a COPAS Biosort. Lower values indicate more severely retarded growth of worms under dietary
copper deficient conditions as compared with controls (no BCS supplementation). Three independent experiments were performed with �200 worms for each
sample. Error bars represent average � S.E., and different letters indicate significantly different means (p � 0.05) (two-way ANOVA, Tukey’s post hoc test).
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Depletion of cua-1 or cuc-1 by RNAi resulted in a decrease in
brood size as compared with vector control RNAi (Fig. 2D).
Double knockdown of cua-1/cuc-1 led to a severe egg-laying
defect, suggesting that a CUC-1/CUA-1 copper relay and trans-
port pathway is conserved in C. elegans, analogous to the
ATOX1-ATP7A/B pathway in mammals.

To investigate the physiological significance of maternal cop-
per availability to progeny, RNAi against cua-1 with either 0 or
10 �M supplemental copper was conducted for 3 days until
parental animals (P0) reached adulthood, and their synchro-
nized L1 progeny (F1) were cultured under identical RNAi
knockdown conditions in the presence or absence of BCS for 2
days. Worms treated with cua-1 RNAi whose parents were
grown in 0 �M supplemental copper displayed delayed growth
rates in the presence of BCS as compared with those treated
with vector control (data not shown). When mothers were pro-
vided with 10 �M supplemental copper, the growth rate of F1
progeny treated with control RNAi was faster than that of prog-
eny from mothers that received no supplemental copper (Fig.
2E). However, the growth rate of the cua-1 knockdown progeny
was not strongly affected when the mothers were cultured in 10
�M supplemental copper (Fig. 2E). These results suggest that
viability of embryos is both dependent upon maternal copper
status and upon cua-1 activity.

CUA-1 Expression Is Regulated by Dietary Copper—To deter-
mine whether cua-1 is transcriptionally regulated by dietary
copper, wild-type N2 worms were cultured with no supplemen-
tation, with 150 �M copper, or with 100 �M BCS, and mRNA
levels were measured by quantitative real time PCR (qRT-PCR).
Levels of cua-1 mRNA were modestly elevated under copper-
limited conditions compared with copper supplementations
(Fig. 3A). To further analyze cua-1 expression and localization,
we generated transgenic animals expressing CUA-1::GFP
translational fusions under the control of an endogenous pro-
moter using the CUA-1.1 isoform, as this isoform is the full-
length form of the CUA-1 gene. Pcua-1::CUA-1.1::GFP trans-
genic animals showed similar tissue distribution patterns to the
previously reported transcriptional reporter worms, which was
primarily intestine, neurons, hypodermis, and pharynx (18),
although the intestinal expression was concentrated mainly in
the anterior of the intestine (Fig. 3B).

The strain VC672 contains a deletion in cua-1(ok904), span-
ning exons 13–15 (Fig. 2A; supplemental Fig. S2C), which is
genetically balanced due to the embryonic lethality of cua-1
mutant worms (21, 23). The cua-1(ok904) deletion removes a
region containing the last two transmembrane helices as well as
an ATP-binding motif and a dileucine-based sorting signal (Fig.
2B). The cua-1(ok904) mutant is rescued with the transgene
Pcua-1::CUA-1.1::GFP, indicating that the CUA-1.1::GFP trans-
lational fusion protein is functional (Fig. 3C). To further con-
firm whether the CUA-1.1::GFP translational fusion protein
can transport copper, we exploited previously established
assays in Atp7a�/� and Atp7a�/� mouse embryonic fibroblasts
(MEFs) (24). Atp7a�/� MEFs transiently transfected with
CUA-1.1::GFP showed increased expression of copper chaper-
one for superoxide dismutase (CCS), indicating decreased lev-
els of cellular copper (25, 26) as compared with Atp7a�/� MEFs
transfected with an empty vector (supplemental Fig. S3A).

Over-accumulated copper in Atp7a�/� MEFs was rescued by
ectopic expression of CUA-1.1::GFP (supplemental Fig. S3B),
further indicating that CUA-1.1 can export copper. Moreover,
these results demonstrate that a C-terminal GFP tag does not
significantly interfere with CUA-1 function.

Unexpectedly, when transgenic worms (Pcua-1::CUA-1.1::
GFP) were maintained at low copper concentrations (50 �M

BCS), stronger CUA-1.1::GFP expression was observed in the
hypodermis, whereas GFP expression levels were not altered in
other tissues such as the intestine and neurons (Fig. 3C).
Indeed, quantification of CUA-1.1::GFP by COPAS Biosort
and immunoblotting assay showed significantly enhanced
CUA-1.1::GFP levels under low copper conditions, suggesting
that copper-dependent regulation in the hypodermal cells con-
tributes to the overall steady-state abundance of CUA-1.1 (Fig.
3, D and E).

To determine the contribution of each tissue to the embry-
onic lethal phenotype of cua-1 mutant worms, we carried out
tissue-specific RNAi experiments. Mutant rde-1 worms are
resistant to RNAi, but restoring tissue-specific expression of
the wild-type rde-1 cDNA in these mutants confers RNAi
sensitivity to a specific tissue (27). We depleted cua-1 in wild-
type N2, WM27 (rde-1 mutant, RNAi insensitive), VP303
(Pnhx-2::RDE-1, intestine only RNAi), WM118 (Pmyo-3::RDE-1,
muscle only RNAi), and NR222 (Plin-26::RDE-1, hypodermis
only RNAi) worm strains (13). Knockdown of cua-1 in the
intestine resulted in reduced fecundity similar to that of whole-
body RNAi (Fig. 3F), indicating that intestinal CUA-1 is crucial
for the survival of worms. Although significant effects were not
observed when cua-1 was knocked down in muscle, depletion
of cua-1 in the hypodermis caused a severe reduction in brood
size under low dietary copper conditions (Fig. 3F). Copper sup-
plementation (10 �M) was able to rescue the reduced brood
sizes phenotype caused by cua-1 RNAi in each of these strains
(Fig. 3F). These results imply a critical role of both intestinal
and hypodermal CUA-1 in worm growth under copper-defi-
cient conditions.

Intestinal Expression of cua-1.1 Is Sufficient to Rescue the
Lethal Phenotype of cua-1(ok904)—Given that targeted deple-
tion of cua-1 in the intestine caused similar phenotypes as
whole-body RNAi, we examined the subcellular localization of
CUA-1.1 by driving the expression of CUA-1.1::GFP from the
strong constitutive intestine-specific vha-6 promoter (28).
Pvha-6::CUA-1.1::GFP localized to basolateral membranes and
to intracellular compartments, reminiscent of basolateral sort-
ing and recycling endosomes in the C. elegans intestine (Fig.
4A) (29). Importantly, the embryonic lethal phenotype of cua-1
(ok904) mutant can be rescued by intestine-specific expression
of CUA-1.1::GFP (Fig. 4, B and C) suggesting that the intestine
is the key site of copper regulation in C. elegans. These results
are further corroborated by the fact that RNAi depletion of
either cuc-1 or cua-1 in Pvha-6::CUA-1.1::GFP;cua-1(ok904)
transgenic animals grown in low copper results in a lethal phe-
notype that can be rescued by copper supplementation. These
observations suggest that a CUC-1/CUA-1 copper delivery
pathway from intestine to peripheral tissues is essential for
worms under dietary copper restriction (Fig. 4, B and C). To
further assess the significance of intestinal CUA-1 function

CUA-1 Trafficking for Organismal Copper Balance

4 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 292 • NUMBER 1 • JANUARY 6, 2017



under varying copper availability, F1 progeny of N2 wild-type,
Pvha-6::CUA-1.1::GFP, and Pvha-6::CUA-1.1::GFP;cua-1(ok904)
worms derived from P0 worms exposed to 10 �M copper were
grown to the L4/young adult stage under different dietary cop-
per conditions and then analyzed by COPAS Biosort. Trans-
genic animals expressing CUA-1.1::GFP under control of the

vha-6 promoter exhibited a reduced growth phenotype when
exposed to high copper and enhanced growth under copper
restriction in a dose-dependent manner (Fig. 4, C and D). We
attribute the copper hypersensitivity to the constitutive overex-
pression of CUA-1.1 in the intestine, which would lead to the
export of copper into the worm body. In line with the assertion

FIGURE 3. Copper deficiency induces cua-1 in C. elegans. A, wild-type L1 worms were cultivated with no supplemental copper, 150 �M copper, or 100 �M BCS
for 2.5 days. The relative fold changes of cua-1 mRNA levels were determined by qRT-PCR. Bars indicate mean � S.E. of three independent experiments. Means
followed by different letters are significantly different at p � 0.05 (one-way ANOVA, Tukey’s post hoc test). B, live transgenic animals expressing a cua-1.1
translational reporter (Pcua-1::CUA-1.1::GFP::unc-54 3�UTR) were imaged by confocal microscopy. I, intestine; N, neurons; P, pharynx; H, hypodermis. Scale bar, 50
�m. C, elevated CUA-1.1::GFP expression in the hypodermis by BCS supplementation was detected in transgenic animals (Pcua-1::CUA-1.1::GFP::unc-54 3�UTR;
cua-1(ok904)). The arrowheads and dashed circles indicate the anterior intestinal cells and hypodermis, respectively. Note that panels b-c and e-f are magnified
images. Scale bars, 200 �m (panels a and d) and 25 �m (panels b-c and e-f). D, normalized GFP was analyzed using a COPAS Biosort. Background fluorescence
and neuronal CUA-1.1::GFP fluorescence (which is refractory to RNAi knockdown), are indicated by a� and b�, respectively. As such, c� represents CUA-1.1::GFP
expression specifically in the intestine, hypodermis, and pharynx. Error bars show mean � S.E. of a single experiment with �200 worms. Groups that do not
share the same letter are significantly different (p � 0.05) (one-way ANOVA, Tukey’s post hoc test). E, immunoblot analysis of CUA-1.1::GFP in transgenic worms
(Pcua-1::CUA-1.1::GFP::unc-54 3�UTR;cua-1(ok904)). Worm lysates were subjected to SDS-PAGE followed by immunoblotting using anti-GFP and anti-tubulin
antibodies. Tubulin is shown as a loading control. F, depletion of cua-1 in the intestine recapitulated the reduced fecundity of whole-animal RNAi. Wild-type N2,
RNAi-resistant worm strain (rde-1), and tissue-specific RNAi lines were cultured on RNAi dishes with indicated concentration of copper or BCS. Int, intestine-
specific RNAi; Mus, muscle-specific RNAi; Hyp, hypodermis-specific RNAi. Error bars represent mean � S.E. Values with one different superscript letter are
significantly different from each other (p � 0.05). n � 3 (two-way ANOVA, Tukey’s post hoc test).
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that intestinal CUA-1 is crucial for copper delivery to extra-
intestinal tissues, depletion of cua-1 by RNAi in both wild-type
and Pvha-6::CUA-1.1::GFP;cua-1(ok904) worms resulted in
improved growth under toxic copper conditions and growth
inhibition under copper restriction as compared with vector
RNAi (Fig. 4, C–E). To further understand the role of cua-1 in
copper metabolism, we measured total worm copper content

using ICP-MS. In the presence of 50 �M copper, either cua-1 or
cuc-1 RNAi knockdown in wild-type worms resulted in �30%
lower total copper content than in control worms, whereas
worms without copper supplementation exhibited similar total
copper contents under both RNAi conditions (Fig. 4F). These
results suggest that accumulation of copper under high dietary
copper conditions is dependent on cua-1.

FIGURE 4. Copper export by intestinal CUA-1 is essential for survival. A, transgenic worms expressing a cua-1.1 translational reporter
(Pvha-6::CUA-1.1::GFP::unc-54 3�UTR) were imaged by confocal microscopy. The bright field image (panel a) shows the morphology of the worm intestine, and the
green signal (panel b) shows CUA-1.1::GFP expression therein. Dotted lines indicate apical membrane; solid lines indicate basal membrane; and arrowheads
indicate lateral membranes in polarized intestinal cells. Scale bar, 20 �m. B and C, survival rates (B) and images (C) of transgenic worms
(Pvha-6::CUA-1.1::GFP::unc-54 3�UTR;cua-1(ok904)) cultured on RNAi plates supplemented with either copper or BCS 48 h post-hatch. Error bars indicate aver-
age � S.E. Means that do not share a letter are significantly different (p � 0.05). n � 3 (two-way ANOVA, Tukey’s post hoc test). D, P0 worms were treated with
10 �M supplemental copper on NGM plates with E. coli OP50. Synchronized L1 stage wild-type N2 worms and transgenic worms ((Pvha-6::CUA-1.1::GFP::unc-54
3�UTR) and (Pvha-6::CUA-1.1::GFP::unc-54 3�UTR;cua-1(ok904))) were grown for 2–2.5 days on NGM plates and analyzed using a COPAS Biosort. Error bars indicate
mean � S.E. of �200 worms (*, p � 0.05; **, p � 0.01; and ***, p � 0.001) (two-way ANOVA, Tukey’s post hoc test). E, synchronized L1 stage wild-type N2 worms
and transgenic worms (Pvha-6::CUA-1.1::GFP::unc-54 3�UTR;cua-1(ok904)) were fed control or cua-1 RNAi bacteria and analyzed using a COPAS Biosort. TOF
equivalent to zero indicates lethal phenotype. Error bars represent mean � S.E. of �200 worms (***, p � 0.001) (two-way ANOVA, Tukey’s post hoc test). F, total
copper levels of L4/young adult stage wild-type worms grown on NGM plates with 0 or 50 �M supplemental copper as determined by ICP-MS. Error bars
indicate mean � S.E. of six independent experiments. Means that do not share letters are significantly different from each other at p � 0.05 (two-way ANOVA,
Tukey’s post hoc test).
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Intestinal CUA-1.1 Distribution Is Regulated by Copper
Levels—Copper-responsive fluorescent probes have been used
to visualize the distribution of labile copper in a variety of
model systems (30 –33). After conducting several pilot studies
with a number of different copper probes in C. elegans, we
selected the copper(I) probe CF4 based on its high specificity
(see under “Experimental Procedures” for details). To investi-
gate the dynamics of copper levels in the intestine, we pre-
exposed worms expressing CUA-1.1::GFP in the intestine to
either 50 �M CuCl2 or 50 �M BCS followed by incubation with
CF4. We observed that worms exposed to supplemental copper
accumulated more fluorescence puncta in the intestine than
worms treated with BCS, although a control CF4 probe, which
lacks the copper-binding atoms but retains the same lipophilic
dye platform, displayed weaker staining (Fig. 5A). These results

indicate that CF4 detects labile copper levels in vesicles of the
intestine in C. elegans.

To test whether dietary copper alters CUA-1.1 localization,
transgenic animals harboring a cua-1.1 translational reporter
driven by the vha-6 promoter were grown under varying copper
concentrations and then imaged using confocal microscopy. In
the presence of 50 �M BCS (Fig. 5B; supplemental Fig. S4) or no
supplemental copper (data not shown), intestinal CUA-1.1::
GFP localized predominantly to basolateral membranes (Fig.
5B, panels a and f), as well as low levels being detectable in
intracellular compartments. We identified these compart-
ments as Golgi, as some of them overlapped with the Golgi
marker MANS::mCherry (supplemental Fig. S4). Strikingly, in
the presence of 25 �M supplemental copper, CUA-1.1::GFP was
redistributed to a cellular compartment that was distinct from

FIGURE 5. Localization of intestinal CUA-1. 1 is altered by copper levels. A, fluorescence images of control-CF4 or CF4 copper probe staining in transgenic
animals (Pvha-6::CUA-1.1::GFP::unc-54 3�UTR) cultured with 50 �M supplemental copper or BCS on NGM agar. Scale bar, 10 �m. B, confocal images of transgenic
animals (Pvha-6::CUA-1.1::GFP::unc-54 3�UTR) expressing CUA-1.1::GFP in the intestine cultured with the copper probe CF4 or the control CF4 probe, the indicated
levels of supplemental copper or BCS, and control or cua-1 RNAi. Images show intestinal cells, and arrowheads indicate representative gut granules and copper
probe positive vesicles overlapping with CUA-1.1::GFP. Scale bar, 10 �m. C, confocal images were taken of transgenic animals (Pvha-6::CUA-1.1::GFP::unc-54
3�UTR) under varying copper conditions. Arrowheads indicate representative CUA-1.1::GFP puncta. Scale bar, 10 �m. D, transgenic animals (Pvha-6::
CUA-1.1::GFP::unc-54 3�UTR) were injected with M9 buffer containing either histidine alone or histidine with CuCl2. Arrowheads indicate punctate of
CUA-1.1::GFP. Scale bar, 20 �m.
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the Golgi (Fig. 5B, panels g and l; supplemental Fig. S4).
CUA-1.1::GFP-containing vesicles overlapped with the auto-
fluorescence of gut granules (Fig. 5B, panel j), an intestine-spe-
cific lysosome-related organelle, indicating that copper may be
concentrated at these sites (34, 35).

To examine the relationship between CUA-1.1 and copper,
transgenic animals expressing CUA-1.1::GFP were cultured
with the copper probe CF4. In worms cultured with 25 �M

copper, CF4 and CUA-1.1::GFP fluorescence overlapped
almost completely, suggesting that CUA-1.1 localizes to the gut
granules that concentrate copper in response to toxic levels of
environmental copper (Fig. 5B, panel k). Additionally, intesti-
nal CUA-1.1::GFP localization shifted from punctate staining
to larger vesicles as worms were exposed to increasing concen-
trations of dietary copper (Fig. 5C). CUA-1.1::GFP expression
in the intestine driven by the endogenous cua-1 promoter
rather than the vha-6 promoter also showed similar trafficking
in response to changes in dietary copper (supplemental Fig. S5
A). Worms in which cua-1 had been depleted by RNAi showed
dramatically decreased levels of CF4 fluorescence in the intes-
tine as compared with control worms (Fig. 5B, panels i and u)
suggesting that CUA-1.1 acts to export copper to gut granules.
In summary, CUA-1.1 mainly resides on the basolateral mem-
branes under basal and copper-deficient conditions, but it
localizes to gut granules in response to increasing dietary cop-
per. Note that these changes are not due to copper-responsive
elevation in protein abundance of intestinal CUA-1.1 (Pvha-6::
CUA-1.1::GFP) in transgenic worms, as immunoblotting and
COPAS Biosort analysis showed no significant differences in
GFP levels when these worms were grown at varying copper
levels (supplemental Fig. S6, A and B).

We next expressed CUA-1.1::GFP in the specialized epithe-
lial cells of the C. elegans hypodermis using the hypodermis-
specific dpy-7 promoter (34). Confocal microscopy studies in
transgenic worms expressing Pdpy-7::CUA-1.1::GFP showed
that in hypodermal tissues, plasma membrane localization of
CUA-1.1::GFP was not affected by dietary copper, suggesting
that copper-responsive trafficking of CUA-1.1 protein is intes-
tine-specific (supplemental Fig. S5B).

To further explore whether the intracellular localization of
intestinal CUA-1.1::GFP is altered by elevated copper status in
the pseudocoelom, �100 �g of CuCl2 per g of worm (wet
weight) in M9 buffer was injected into the pseudocoelom of
adult worms harboring the CUA-1.1::GFP transgene, which
had been preincubated with 50 �M BCS. Interestingly, we
observed a punctate pattern of CUA-1.1::GFP in the intestine of
animals injected with copper, whereas M9-injected controls
showed predominantly basolateral membrane localization (Fig.
5D), implying the existence of a systemic copper homeostasis
mediated by the trafficking of intestinal CUA-1.1.

CUA-1.1 Is Required for Copper Detoxification in Intestine—
To further investigate the dynamics of CUA-1.1 localization in
response to sub-toxic doses of copper supplementation, we
assayed CUA-1.1 colocalization with LysoTracker, a lysosome-
specific fluorescent dye (35, 36). In the presence of 50 �M

copper, LysoTracker was observed in intestinal vesicles sur-
rounded by membrane-bound CUA-1.1::GFP (Fig. 6A). Upon
RNAi knockdown of cua-1, the number and morphology of

LysoTracker-positive compartments did not change. However,
RNAi knockdown pgp-2, which encodes an ABC transporter
that is required for gut granule biogenesis and localizes to the
gut granule membrane (35, 37), significantly reduced Lyso-
Tracker staining and prevented CUA-1.1::GFP-containing ves-
icle formation, whereas CUA-1.1::GFP was detected on the
basolateral membrane (Fig. 6A). These results further suggest
that CUA-1.1 localizes to the membranes of gut granules, and
gut granules are the destination of copper sequestered by CUA-
1.1 in the intestine when animals are exposed to high dietary
copper.

To determine whether copper sequestration into gut gran-
ules by CUA-1.1 contributes to copper detoxification, we tested
copper sensitivity by measuring the growth rate of C. elegans in
the presence of increasing concentrations of copper. When
compared with control worms, pgp-2 depleted worms showed
increased sensitivity to high copper, as they displayed a dose-
dependent decrease in growth rate in response to copper (Fig.
6B). To quantify copper sequestration defects in gut granule-
deficient worms, we measured total copper content in worms
by ICP-MS. pgp-2 mutant worms cultured in 50 �M copper
displayed reduced total copper content as compared with wild-
type worms (Fig. 6C). Consistent with previous reports, pgp-2
mutant worms displayed lower zinc content independent of
copper supplementation (supplemental Fig. S7, A and B) (8).
These results indicate that copper deposition accounts for a
significant proportion of total body copper in C. elegans and
that gut granules are at least partially required for copper
detoxification.

CUA-1 Isoforms Function Coordinately to Maintain Systemic
Copper Levels—RNAseq assays with synchronized populations
of worms treated with different copper or BCS levels revealed
the existence of cua-1.2 variant as annotated (Fig. 2A), although
relative levels of the two isoforms have not been established.3
To examine whether intestinal CUA-1.2 also retains the capac-
ity to traffic in response to a high copper diet, we generated
transgenic worms expressing a CUA-1.2::GFP translational
fusion driven from the intestinal vha-6 promoter. Confocal
microscopy analysis showed that CUA-1.2::GFP is localized to
the basolateral membranes irrespective of dietary copper con-
centration (Fig. 7A). Additionally, CUA-1.2::GFP did not colo-
calize with autofluorescent gut granules under high copper
conditions suggesting CUA-1.2 functions constantly at basolat-
eral membranes. Because CUA-1.1 has an additional 122 amino
acid sequences at the N terminus end compared with CUA-1.2,
it is plausible that copper-dependent trafficking of CUA-1.1 to
gut granules is dependent on trafficking motifs within this
N-terminal segment.

Discussion

Dietary copper availability can fluctuate widely depending
upon an organism’s immediate environment, as would be the
case in C. elegans, which lives in soil. In this study, we show that
CUA-1.1 is expressed in intestinal cells and normally localizes
to the basolateral membrane and intracellular compartments,
such as the Golgi. When worms are exposed to higher copper

3 B.-E. Kim, unpublished data.
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levels, redistribution of intestinal CUA-1.1 promotes copper
sequestration into lysosome-related organelles called gut gran-
ules. Defects in gut granule biogenesis lead to decreased copper
accumulation and increased susceptibility to toxic copper lev-
els. Together, these results suggest that copper homeostasis is
regulated by altering the localization of intestinal CUA-1.1 to
either the basolateral membrane for delivery of copper to
peripheral tissues or to the gut granule membrane to prevent
copper toxicity (Fig. 7B).

In C. elegans, which lack a liver, the intestine has been
thought to perform functions associated with both the intestine
and the liver (38). Worms encode only one copper exporter
gene, cua-1, raising the question as to whether CUA-1 accom-
plishes some or all of the similar functions as ATP7A/B in the
intestine and liver of mammals (20). We found that CUA-1
protein abundance in the intestine was not changed by dietary
copper. Instead, both CUA-1 isoforms localize to basolateral
membranes and intracellular compartments, including the
Golgi under basal and copper-limiting conditions. The CUA-
1.1 isoform alone redistributes to the gut granules when worms
are exposed to high levels of copper, indicating that CUA-1
shares physiological features of mammalian ATP7A and

ATP7B. Enrichment of CUA-1.1 to the membrane of gut gran-
ules rather than the basolateral membrane of the intestine sug-
gests a distinct role for intestinal CUA-1.1 in detoxification of
excess copper in C. elegans. Although relocation of CUA-1.1
and ATP7B to the gut granules and apical membrane, respec-
tively, in polarized cells is not identical, the direction of traffick-
ing toward preventing systemic copper toxicity is similar.
Taken together, these data indicate that intestinal CUA-1 func-
tions as copper exporters in worms like ATP7A/B in both the
intestine and liver of mammals to maintain copper balance in
the body.

Given that CUA-1.2 lacks a portion of the N-terminal intra-
cellular domain of CUA-1.1 and is targeted constitutively to the
basolateral membrane even under copper-loaded conditions,
necessary trafficking information may exist in the first 122
amino acids of CUA-1.1 for copper responsiveness and correct
targeting to gut granules. Several intriguing questions arise
from this observation. What route does CUA-1.1 take to reach
gut granules when intracellular copper is increased? Where
within the first 122 amino acids is the crucial targeting signal?
What cellular machinery recognizes the copper signal? One
possible sorting complex is the biogenesis of lysosome-related

FIGURE 6. CUA-1.1 sequesters excess copper to gut granules. A, confocal images of transgenic animals (Pvha-6::CUA-1.1::GFP::unc-54 3�UTR) exposed to
varying RNAi conditions in the presence of 50 �M supplemental copper, followed by incubation with LysoTracker. Boxed images in the top row are enlarged at
the corner of each panel. Scale bar, 10 �m. B, synchronized wild-type L1 larvae were cultured on RNAi plates supplemented with the indicated concentrations
of copper for 2.5 days. TOF was determined using a COPAS Biosort. Error bars indicate average � S.E. of two independent experiments. (**, p � 0.01, two-way
ANOVA, Tukey’s post hoc test.) C, total copper levels of wild-type and pgp-2(kx48) worms as measured by ICP-MS. Error bars show mean � S.E. of three
independent experiments. Values marked with different letters are significantly different at p � 0.05 (two-way ANOVA, Tukey’s post hoc test).
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organelles complex-1 (BLOC-1), which is a known regulator of
intracellular trafficking to lysosome-related organelles in mam-
mals, Drosophila, and C. elegans (39 – 41). ATP7A is known to
supply copper to melanosomes in a BLOC-1-dependent man-
ner in mammalian cells, and BLOC-1 subunits are also required
for the proper trafficking of gut granule cargo in worms (39, 42).
Given that CUA-1.1 localizes to gut granules and that ATP7A
localizes to melanosomes in response to elevated levels of cop-
per, redistribution of the copper exporter may require the
BLOC-1 complex and related sorting proteins in metazoans.

We have determined that gut granules function to sequester
excess copper via CUA-1.1 in the intestine. Ablation of cua-1 by
RNAi does not interfere with the formation of gut granules, but
copper was not readily detected by a copper probe in gut gran-
ules upon the loss of CUA-1.1. RNAi depletion of pgp-2 genes
resulted in significantly reduced numbers of gut granules and
increased sensitivity to copper toxicity. However, whether
stored copper is capable of being reutilized under copper-lim-
iting conditions was not determined. Studies by Kornfeld and
co-workers (8) have shown that gut granules act to detoxify and

store dietary zinc via the CDF-2 zinc exporter. When worms
were exposed to high concentrations of dietary zinc, gut gran-
ules displayed a bilobed morphology, which was not observed
in our studies with CUA-1.1 and high dietary copper. We spec-
ulate that gut granules may function as a central site of metal
storage to prevent its cytotoxicity. This is specifically relevant
because depletion of the metallothionein genes mtl-1 and mtl-2
by RNAi does not result in the expected enhanced susceptibility
to copper toxicity (43, 44), raising the possibility that C. elegans
may adopt a protective mechanism to withstand an environ-
mental challenge of toxic copper by sequestering copper to an
intracellular location via CUA-1.1.

Unexpectedly, we observed that CUA-1.1 expression is up-
regulated in response to dietary copper deficiency in the hypo-
dermis when expressed under the control of an endogenous
promoter. Given that CUA-1.1 abundance was not altered
under the dpy-7 promoter, and that cua-1 transcript levels
increased under copper-limiting conditions, hypodermal cua-1
may respond to copper deficiency transcriptionally. MTF-1 is
known to transcriptionally induce both ATP7 and metallothio-
nein expression in Drosophila, but no MTF-1 homolog has
been defined in C. elegans (45– 48). MTF-1-independent
metal-responsive transcription factors have been identified,
suggesting the existence of other copper-responsive transcrip-
tion factors that could regulate cua-1 expression in the hypo-
dermis (43, 49). CUA-1 in the hypodermis may deliver copper
to the secretory pathway for copper incorporation into copper-
dependent enzymes. Another possibility is that the hypodermis
acts as a copper storage compartment that can release copper to
peripheral tissues by increasing CUA-1.1 expression when
worms are in a copper-deficient environment. When CUA-1.1
is highly expressed in the hypodermis under dietary copper
restriction, most CUA-1.1 localizes to plasma membranes.
Notably, the hypodermis is known to act as a major fat storage
site in worms by accumulation of lipid droplets (50, 51).

Organs communicate to ensure that intestinally derived
micronutrients are distributed appropriately throughout tis-
sues in the body, balancing cellular requirements against toxic-
ity (52, 53). We injected copper into the pseudocoelom of adult
worms expressing CUA-1.1::GFP that had been precultured
with BCS. Interestingly, worms injected with copper showed a
punctate distribution of CUA-1.1::GFP, implying that CUA-1.1
responds to copper status in the pseudocoelom and/or copper
overload in peripheral tissues. In mammals, iron overload
results in the liver producing elevated levels of secreted hepci-
din that interacts with the ferroportin iron exporter on the
basolateral membrane of intestinal epithelial cells as well as on
macrophages. Hepcidin causes ferroportin to be internalized,
resulting in decreased iron entry into the bloodstream (53, 54).
In C. elegans, several neuropeptides are known to mediate
intestinal function to regulate metabolism and development
(55–57), although a hepcidin homolog has not been found. Car-
diac copper deficiency caused by depletion of the Ctr1 copper
importer in the heart induced a significant up-regulation of
ATP7A in the intestine of mice, which may lead to increased
copper supply into circulation (58). This study suggested that
cross-talk may take place between tissue types to coordinate
systemic copper homeostasis. In C. elegans, although entero-

FIGURE 7. Copper homeostasis in worms is maintained by distinctly local-
ized intestinal CUA-1 isoforms. A, confocal images of transgenic animals
(Pvha-6::CUA-1.2::GFP::unc-54 3�UTR) expressing CUA-1.2::GFP in the intestine
in the presence of 50 �M supplemental copper or BCS. Scale bar, 10 �m. B,
model of copper homeostasis in C. elegans is shown. Dietary copper ions are
transported from the lumen of the intestine to the enterocytes by an uniden-
tified copper importer, and CUC-1 delivers copper to CUA-1. Under basal cop-
per or copper-deficient conditions, CUA-1.1 isoform localizes to the basolat-
eral membrane and Golgi to either export copper ions to peripheral tissues or
to direct copper into the secretory pathway. CUA-1.2 consistently localizes to
the basolateral membrane of enterocytes regardless of copper conditions.
CUA-1.1 is redistributed to the gut-granule membranes in response to ele-
vated copper levels to promote copper detoxification in C. elegans.
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cyte-autonomous copper homeostasis regulation may result in
a sufficient organismal copper balance in general, another pos-
sibility is that intestinal CUA-1.1 is regulated via an inter-organ
communication network. A cellular component responsible for
copper-dependent CUA-1.1 trafficking in the intestine may be
the molecular link by which the enterocytes sense and respond
to extraintestinal copper status. Future studies to characterize
how intestinal copper acquisition and distribution are regu-
lated at the systemic level may lead to the discovery of new
pathways of organismal copper trafficking.

Experimental Procedures

Worm Culture and Strains—C. elegans were cultivated at
20 °C on NGM plates seeded with E. coli OP50 or HT115(DE3)
as a food source. Strain information (including the Bristol N2
strain, transgenic strains, and deletion strains used in this
study) is detailed in supplemental Table S1. Several worm
strains were obtained from the Caenorhabditis Genetics Cen-
ter, which is funded by the National Institutes of Health Office
of Research Infrastructure Programs. The presence of the cua-1
(ok904) allele was confirmed by sequencing of the cua-1 locus
using the following primers: 5�-CCAGCTAACCACAATTGT-
TTTCG-3� and 5�-CGAATCCTTCTCGTCGTCATTTTC-3�.
Genotypes of transgenic animals and mutant worms were con-
firmed by DNA sequencing or PCR. CuCl2 was used as the
source for copper supplementation in NGM dishes and media
in all experiments.

Worm Analysis Using COPAS Biosort or Microscopy—Gravid
hermaphrodites were bleached to release their eggs, which were
allowed to hatch and arrest at the L1 stage in M9 buffer over-
night. The resultant age-synchronized L1 larvae were cultured
on NGM plates for �2.5 days. Worms from each condition
(�200 worms) were analyzed for time of flight (length), extinc-
tion (width), and GFP fluorescence using a COPAS Biosort
FP-250 (Union Biometrica). To visualize live worms, animals
were paralyzed in M9 buffer containing 10 mM sodium azide
(NaN3) and mounted on agarose pads. GFP, mCherry, copper
probe CF4, autofluorescence, and LysoTracker fluorescence in
worms were imaged using an SP5 X confocal microscope
(Leica).

ICP-MS—Metal contents of worms and MEFs were mea-
sured using ICP-MS as described previously (59). Values were
normalized to wet weight of worms or cells. For sample prepa-
ration, synchronized L1 worms were grown on 10-cm NGM
plates seeded with OP50 or HT115 RNAi bacteria and supple-
mented with the indicated amounts of copper or BCS. Worm or
cell pellets were collected and washed extensively with M9
buffer or PBS, respectively, transferred to acid-washed tubes,
and frozen at �80 °C. At least three independent biological rep-
licates were analyzed.

qRT-PCR—Synchronized larvae were grown to the L4/young
adult stage on NGM plates seeded with OP50 bacteria and sup-
plemented with indicated concentrations of copper or BCS.
Then the worms were extensively washed with M9 buffer and
collected for RNA isolation. Briefly, worms were resuspended
in TRIzol (Invitrogen) reagent followed by lysis using a Fast-
Prep-24 (MP Biomedicals) homogenizer in Lysing Matrix
Tubes (MP Biomedicals). Total RNA was isolated using TRIzol

and treated with DNase I (Ambion), and cDNA was produced
using SuperScript VILO Master Mix (Invitrogen). Real time
PCR was performed on an Agilent Mx3005P qPCR system ther-
mocycler (Agilent Genomics) using SYBR Green JumpStart
Taq ReadyMix (Sigma). Expression levels of cua-1 were com-
pared with an internal GAPDH (gpd-2) control, and the fold
changes were determined using the 2�		Ct method (60). The
primers used for qPCR were as follows: cua-1, 5�-TGGCACA-
ATCACCGAAGGAC-3� and 5�-CAATCGGATGCTCCGAC-
AAA-3�; and gpd-2, 5�-TGCTCACGAGGGAGACTAC-3� and
5�-CGCTGGACTCAACGACATAG-3�.

Plasmid Construction and Transgenic Strain Generation—
To generate C. elegans expression plasmids, gene-specific gate-
way attB primers were used to amplify DNA sequences such as
promoters, ORFs, and 3�-UTRs. Purified DNA fragments were
recombined into donor vectors first and then into expression
plasmids using Gateway recombination reactions (Invitrogen).
For mammalian cell expression plasmids, the GFP-tagged ORF
of CUA-1 was digested with NheI and BamHI and ligated into
the pEGFP-C1 vector (Clontech). Transgenic animals were
produced by introducing transcriptional or translational
reporters into unc-119 worms using the PDS-1000 particle
delivery system (Bio-Rad) for bombardment transformation
(13, 15).

RNA Interference (RNAi)—RNAi bacteria strains against
cua-1 (Y76A2A.2) and pgp-2 (C34G6.4) were obtained from
the Ahringer feeding library (61), and cuc-1 (ZK652.11) was
obtained from the ORFeome-based RNAi library (62). Bacteria
transformed with the empty L4440 vector were used as a nega-
tive RNAi control. Synchronized L1 animals were grown on
RNAi plates (NGM dishes containing 2 mM isopropyl 1-thio-�-
D-galactopyranoside, 12 �g/ml tetracycline, and 50 �g/ml car-
benicillin) that were seeded with HT115(DE3) bacteria express-
ing dsRNA for each gene.

Cell Culture and Immunoblotting—Atp7a�/� and Atp7a�/�

MEFs were cultured in Dulbecco’s modified Eagle’s medium
(DMEM; Lonza) supplemented with 10% (v/v) heat-inactivated
fetal bovine serum (FBS; Atlanta Biologicals) and 100 units/ml
penicillin/streptomycin (Lonza). The plasmid expressing
CUA-1.1::GFP was transfected to Atp7a�/� MEFs using
PolyJet (SignaGen Laboratories). All cells were cultured under
5% CO2 at 37 °C. Cells at �70% confluence were collected and
washed three times with ice-cold PBS, pH 7.4. Cell pellets were
suspended in about five times their volume in ice-cold cell lysis
buffer (PBS, pH 7.4, 1% Triton X-100, 0.1% SDS, 1 mM EDTA)
containing Halt protease inhibitor mixture (Thermo Scien-
tific), briefly vortexed, and incubated for 1 h. Early stage adult
worms grown from synchronized larvae were collected and
washed with M9 buffer. Worms were resuspended in the same
lysis buffer followed by disruption using a FastPrep-24 (MP
Biomedicals) homogenizer in the presence of glass beads. The
same lysis buffer was used for disruption of MEFs on ice for 30
min. Cell suspensions and worm lysates were centrifuged at
16,000 
 g at 4 °C for 15 min. After centrifugation, the clarified
lysates were used for immunoblotting, and protein concentra-
tions were measured using the BCA protein assay kit (Thermo
Scientific). Samples (100 �g/lane) were fractionated on a
4 –20% gradient gel (Bio-Rad). The anti-ATP7A antibody (a gift
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from Dr. Stephen G. Kaler, National Institutes of Health,
Bethesda), anti-GFP (Covance), and anti-tubulin antibody
(Sigma) were used at a 1:1000 dilution. The anti-CCS anti-
body (Santa Cruz Biotechnology) and anti-GAPDH antibody
(Sigma) were used at 1:4000 dilution and 1:10,000 dilution,
respectively. Horseradish peroxidase-conjugated anti-rabbit or
anti-mouse IgG (Rockland Immunochemicals) was used as the
secondary antibody for immunoblotting (1:5000 dilution).
Immunoblots were detected using SuperSignal West Pico
Chemiluminescent Substrate reagents (Thermo Fisher Scien-
tific) using a chemidocumentation imaging system (Bio-Rad).

Staining with the Copper Probe CF4 and LysoTracker—The
Copper Fluor-4 (CF4) sensor combines a piperidine-substi-
tuted rhodol with a trifluoromethyl-substituted bottom ring
bearing a thioether receptor, along with a matched control
Copper Fluor-4 (Control CF4) dye that lacks the copper-re-
sponsive receptor to help distinguish between copper-depen-
dent and dye-dependent responses (30, 63). Replacement of the
thioether-rich receptor arms for copper recognition in CF4 by
isostructural octyl groups in control CF4 provides a mimic of
the size, shape, and hydrophobicity of thioethers but do not
bind copper, offering a matched pair of probes to disentangle
copper-dependent fluorescence responses from potential dye-
dependent ones. We used the Rhodol-based CF4 probe and
control CF4 probe (both final concentrations of 25 �M) for
staining copper(I) in intact worms and 2 �M LysoTracker Red
DND-99 (Invitrogen) for detecting gut granules. Both chemi-
cals were prepared in M9 buffer and dispensed onto NGM
plates (8). L3 stage worms were cultured on these dishes for
12–16 h in the dark. Postincubation, the stained worms were
transferred to seeded NGM plates containing copper concen-
trations equivalent to treatment conditions. After 2 h of incu-
bation, worms were collected and washed three times with M9
buffer and imaged via confocal microscopy.

Copper Microinjection Experiments—To deliver copper
directly to the basolateral side of the intestine and peripheral
tissues, CuCl2 solution was microinjected into the pseudocoe-
lom in the posterior region of young adult worms that had been
grown in 50 �M BCS-treated NGM dishes. Histidine or CuCl2
with histidine (1:2 molar ratio) diluted in M9 buffer was
injected to worms using an Eppendorf Femtojet microinjector
attached to a Leica inverted microscope under specified set-
tings (injection pressure � 30 p.s.i., compensation pressure �
4.5 p.s.i., injection time � 4 s). Worms were recovered on
seeded plates for 6 h and then mounted on 2% agarose pads for
imaging.

Bioinformatics and Statistics—Clustal Omega and ClustalW2
were used to generate a multiple sequence alignment and phy-
logenetic tree of a subset of cua-1 homologs (64). Transmem-
brane helices and copper-binding motifs of CUA-1 homologs
were predicted using Trans-Membrane prediction using Hid-
den Markov Models and the Conserved Domain Database (22).
Statistical significance was determined using a one-way or two-
way ANOVA followed by Tukey’s post hoc test in GraphPad
Prism, Version 6 (GraphPad Software). All data are presented
as mean � S.E., and p values less than 0.05 were considered to
be statistically significant.
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