141 research outputs found

    Convective Vortices on Mars: A Reanalysis of Viking Lander 2 Meteorological Data, Sols 1-50

    Get PDF
    On 7th August 1976 the Viking 2 lander touched down at Utopia Planitia, Mars. We have reanalysed Viking lander 2 meteorological data, and it is the object of this research to give not only annual but diurnal statistics of convective vortex formation for the Viking 2 landing site

    Enhanced THz transmission apertures through sub-wavelength annular apertures

    Get PDF
    We report on the development of a surface micromachined process for the fabrication of coaxial apertures surrounded by periodic grooves. The process uses a combination of copper electroforming and the negative epoxy based resist, SU8, as a thin flexible substrate. The device dimensions are suitable for the implementation of filters at THz frequencies, and measurements show a pass band centred around 1.5 THz. These devices could form the basis of the next generation of THz biosensors

    Interface optical phonons in spheroidal dots: Raman selection rules

    Full text link
    The contribution of interface phonons to the first order Raman scattering in nanocrystals with non spherical geometry is analyzed. Interface optical phonons in the spheroidal geometry are discussed and the corresponding Frohlich-like electron-phonon interaction is reported in the framework of the dielectric continuum approach. It is shown that the interface phonon modes are strongly dependent on the nanocrystal geometry, particularly on the ellipsoid's semi-axis ratio. The new Raman selection rules have revealed that solely interface phonon modes with even angular momentum are allowed to contribute to the first order phonon-assisted scattering of light. On this basis we are able to give an explanation for the observed low frequency shoulders present in the Raman cross-section of several II-VI semiconductor nanostructures.Comment: 8 pages, 2 figure

    Calculations on the Size Effects of Raman Intensities of Silicon Quantum Dots

    Get PDF
    Raman intensities of Si quantum dots (QDs) with up to 11,489 atoms (about 7.6 nm in diameter) for different scattering configurations are calculated. First, phonon modes in these QDs, including all vibration frequencies and vibration amplitudes, are calculated directly from the lattice dynamic matrix by using a microscopic valence force field model combined with the group theory. Then the Raman intensities of these quantum dots are calculated by using a bond-polarizability approximation. The size effects of the Raman intensity in these QDs are discussed in detail based on these calculations. The calculations are compared with the available experimental observation. We are expecting that our calculations can further stimulate more experimental measurements.Comment: 21 pages, 7 figure

    Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on Mars and Earth

    Get PDF
    Dust devils – convective vortices made visible by the dust and debris they entrain – are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites. We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a hundred active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements. Daily (10:00 to 16:00 local time) and two-hour averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-minute smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10-20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction. The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in-situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain

    Wiskott-Aldrich Syndrome protein deficiency perturbs the homeostasis of B-cell compartment in humans

    Get PDF
    Wiskott-Aldrich Syndrome protein (WASp) regulates the cytoskeleton in hematopoietic cells and mutations in its gene cause the Wiskott-Aldrich Syndrome (WAS), a primary immunodeficiency with microthrombocytopenia, eczema and a higher susceptibility to develop tumors. Autoimmune manifestations, frequently observed in WAS patients, are associated with an increased risk of mortality and still represent an unsolved aspect of the disease. B cells play a crucial role both in immune competence and self-tolerance and defects in their development and function result in immunodeficiency and/or autoimmunity. We performed a phenotypical and molecular analysis of central and peripheral B-cell compartments in WAS pediatric patients. We found a decreased proportion of immature B cells in the bone marrow correlating with an increased presence of transitional B cells in the periphery. These results could be explained by the defective migratory response of WAS B cells to SDF-1α, essential for the retention of immature B cells in the BM. In the periphery, we observed an unusual expansion of CD21low B-cell population and increased plasma BAFF levels that may contribute to the high susceptibility to develop autoimmune manifestations in WAS patients. WAS memory B cells were characterized by a reduced in vivo proliferation, decreased somatic hypermutation and preferential usage of IGHV4-34, an immunoglobulin gene commonly found in autoreactive B cells. In conclusion, our findings demonstrate that WASp-deficiency perturbs B-cell homeostasis thus adding a new layer of

    Review of experimental methods to determine spontaneous combustion susceptibility of coal – Indian context

    Get PDF
    This paper presents a critical review of the different techniques developed to investigate the susceptibility of coal to spontaneous combustion and fire. These methods may be sub-classified into the two following areas: (1) Basic coal characterisation studies (chemical constituents) and their influence on spontaneous combustion susceptibility. (2) Test methods to assess the susceptibility of a coal sample to spontaneous combustion. This is followed by a critical literature review that summarises previous research with special emphasis given to Indian coals

    Luminescence Dating in Fluvial Settings: Overcoming the Challenge of Partial Bleaching

    Get PDF
    Optically stimulated luminescence (OSL) dating is a versatile technique that utilises the two most ubiquitous minerals on Earth (quartz or K-feldspar) for constraining the timing of sediment deposition. It has provided accurate ages in agreement with independent age control in many fluvial settings, but is often characterised by partial bleaching of individual grains. Partial bleaching can occur where sunlight exposure is limited and so only a portion of the grains in the sample was exposed to sunlight prior to burial, especially in sediment-laden, turbulent or deep water columns. OSL analysis on multiple grains can provide accurate ages for partially bleached sediments where the OSL signal intensity is dominated by a single brighter grain, but will overestimate the age where the OSL signal intensity is equally as bright (often typical of K-feldspar) or as dim (sometimes typical of quartz). In such settings, it is important to identify partial bleaching and the minimum dose population, preferably by analysing single grains, and applying the appropriate statistical age model to the dose population obtained for each sample. To determine accurate OSL ages using these age models, it is important to quantify the amount of scatter (or overdispersion) in the well-bleached part of the partially bleached dose distribution, which can vary between sediment samples depending upon the bedrock sources and transport histories of grains. Here, we discuss how the effects of partial bleaching can be easily identified and overcome to determine accurate ages. This discussion will therefore focus entirely on the burial dose determination for OSL dating, rather than the dose-rate, as only the burial doses are impacted by the effects of partial bleaching
    • …
    corecore