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Calculations on the size effects of Raman intensities of silicon quantum dots

Wei Cheng* and Shang-Fen Ren
Department of Physics, Illinois State University, Normal, Illinois 61790-4560

~Received 7 May 2001; revised manuscript received 13 November 2001; published 25 April 2002!

Raman intensities of Si quantum dots~QD’s! with up to 11489 atoms~about 7.6 nm in diameter! for
different scattering configurations are calculated. First, phonon modes in these QD’s, including all vibration
frequencies and vibration amplitudes, are calculated directly from the lattice-dynamic matrix by using a
microscopic valence force field model combined with the group theory. Then the Raman intensities of these
quantum dots are calculated by using a bond-polarizability approximation. The size effects of the Raman
intensity in these QD’s are discussed in detail based on these calculations. The calculations are compared with
the available experimental observations. We are expecting that our calculations can further stimulate more
experimental measurements.

DOI: 10.1103/PhysRevB.65.205305 PACS number~s!: 78.30.2j, 63.22.1m, 02.20.2a, 81.05.Cy

I. INTRODUCTION

Semiconductor quantum dots~QD’s! have attracted much
research attention in recent years because of their importance
in the fundamental understanding of physics and potential
applications in electronic devices, information processing,
and nonlinear optics. The electronic properties of QD’s have
been intensively studied in recent years, both theoretically
and experimentally, and a clear understanding of much of the
basic physics of the quantum confinement effects of elec-
trons in QD’s has been achieved.1 On the other hand, the
vibration properties of QD’s, i.e., the confinement of phonon
modes in QD’s, are less understood.

So far, most of the theoretical understanding of phonon
modes in QD’s is based on the continuum dielectric models.
The analytic expression of the eigenfunctions of LO phonons
and surface optical phonons of small spherical2–10 and
cylindrical11 QD’s has been derived and the electron-phonon
interactions calculated. The extended continuum dielectric
model8–10 coupling the mechanical vibrational amplitudes
and the electrostatic potential has made major improvements
over classical dielectric models in the study of phonon
modes in QD’s. However, one of the basic assumptions of all
dielectric models is that the material is homogeneous and
isotropic, that is, only valid in the long-wavelength limit.
When the size of QD’s is small, in the range of a few na-
nometers, the continuum dielectric models are intrinsically
limited.

Many optical, transport, and thermal properties of quan-
tum dots are related to phonon behavior in QD’s. The theo-
retical treatment of these properties requires a reliable de-
scription of phonon modes and electron-phonon interaction
potential in QD’s. One of the major difficulties of the micro-
scopic modeling of phonon modes in QD’s is its computa-
tional intensity. For example, a GaAs QD of size of about 8.0
nm contains 11 855 atoms. Considering the three-
dimensional motion of each atom, the dynamic matrix is in
the order of 35 565. This is an intimidating task even with the
most advanced computers. In recent years, we have devel-
oped a microscopic valence force field model12–15 ~VFFM!
to study phonon modes in QD’s by employing the projection
operators of the irreducible representations of the group

theory to reduce the computational intensity. By employing
the group theory, for example, the above matrix of size of
35 565 can be reduced to five matrices in five different rep-
resentations ofA1 , A2 , E, T1, andT2, with the sizes of 1592,
1368, 2960, 4335, and 4560, respectively. Therefore, the
original problem is reduced to a problem that can be easily
handled by most reasonable computers. This allows not only
the investigation of phonon modes in QD’s with a much
larger size, but also the investigation of phonon modes in
QD’s with different symmetries. These investigations lead to
many interesting physics that otherwise cannot be
revealed.12–15 With this model, we have studied the size ef-
fects of phonon modes in semiconductor quantum dots, in-
cluding QD’s of one material, such as GaAs or InAs, as well
as QD’s with a core of one material embedded in a shell of
another material, such as GaAs cores embedded in AlAs
shells. To further develop our theoretical model in investiga-
tions of properties of QD’s, in this paper, we have studied the
size effects of Raman intensity in semiconductor QD’s with
the same model.

It is well known that the measurement of Raman spectra
of crystals is one of the most important methods for obtain-
ing information about their lattice vibrations.16,17 Raman
spectroscopy has been used to investigate the geometry, the
nature, and the structures of QD’s.2,3,18–22So far, most of the
theoretical calculations on Raman scattering are based on the
phenomenological model.2,3 Recently there have been calcu-
lations based on microscopic models,25,26 but because of the
limitation on the computational intensity, the size range of
the QD’s that can be handled is limited.

In this paper, we have calculated the Raman intensities of
nanoscale Si QD’s by using the results of the VFFM together
with a bond-polarizability approximation~BPA!.23–28 The
calculated results are then compared with the available ex-
perimental data. We also hope that our calculations can fur-
ther stimulate more experimental measurements on Raman
intensities of semiconductor QD’s.

The paper is organized as follows. In Sec. II, we describe
the theoretical models of the VFFM and BPA; in Sec. III, we
show our calculated results of Raman intensities and have
some discussions; and Sec. IV is a summary.
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II. THEORETICAL APPROACHES

A. VFFM for phonon modes in QD’s

In general, the theoretical model, VFFM, that we used to
investigate phonon modes in QD’s can be used to study pho-
non modes in group IV, III-V, and II-VI semiconductors. In
this model, the change of the total energy due to the lattice
vibration is considered as two parts, the change of the energy
due to the short-range interactions and the change of the
energy due to the long-range Coulomb interaction:

DE5DEs1DEc , ~2.1!

where the short-range interaction describes the covalent
bonding, and the long-range part approximates the Coulomb
interactions of polar semiconductor compounds. For the
short-range part, we employed a VFFM with only two pa-
rameters as the following:29

DEs5(
i

1
2 C0S Ddi

di
D 2

1(
j

1
2 C1~Du j !

2, ~2.2!

whereC0 andC1 are two parameters describing the energy
change due to the bond-length change and the bond angle
change, respectively. The summation runs over all the bond
lengths and bond angles. Because each of these two param-
eters has a simple and clear physical meaning, this model
allows us to treat the interaction between atoms near and at
the surface appropriately. It can be further used to treat the
effects of surface relaxations and reconstructions on the vi-
brations if necessary. The parametersC0 , C1 used in our
calculations for Si are 49.1 and 1.07 eV, respectively.29 Since
silicon is a homopolar semiconductor in which all atoms are
neutral, the long-range Coulomb interaction30 is not neces-
sary.

When considering the interaction between atoms, special
attention is paid to atoms near the surfaces of the QD’s. More
specifically, for the short-range interaction, when an atom is
located near the surface, interaction from its nearest-
neighboring atom is considered only if that specific nearest
atom is within the QD, and interaction from its second-
neighboring atom is considered only if that specific second-
neighbor atom is in the QD as well as the nearest-
neighboring atom that makes the link between them. The
second point is important, because it makes sense with the
physics meanings of these two parameters, but it is easy to
be neglected.

As we discussed in the above section, we have employed
the projection operators of the irreducible representations of
the group theory to reduce the computational intensity31–34

when calculating phonon modes directly from the dynamic
matrices. When the results of phonon modes are used to
calculate the Raman intensity of QD’s, the advantage of ap-
plying the group theory to calculate phonon modes in differ-
ent symmetries is even more obvious. Because of the sym-
metry dependence of Raman intensity, only phonon modes
that are Raman active in that specific symmetry are neces-
sary to be considered. This further reduces the amount of
calculations required.

B. Bond-polarizability approximation

With the vibrational normal modes obtained from the
VFFM described, we use the BPA~Ref. 23! to calculate
Raman-scattering intensity of QD’s. This BPA model was
used in the prediction of Raman intensities of semiconductor
superlattices,24–26 fullerences,27 and nanotubes.28

The BPA~Ref. 23! associates an axially symmetric polar-
izability tensor with each bond as

PJ ~RW i j !5a~Ri j !IJ1g~Ri j !F R̂i j R̂i j 2
1

3
IJG , ~2.3!

where IJ is a unit matrix,a(Ri j ) is the mean polarizability,
and g(Ri j ) describes the anisotropy of the polarizability.
Both a(Ri j ) andg(Ri j ) are functions of the bond lengthRi j

and not direction dependent. HereRW i j is the bond vector
connecting atomsi and j, Ri j is the length ofRW i j , and R̂i j

5RW i j /Ri j . With phonon vibrations we haveRW i j 5rW i j 1uW i j

5rW i j 1uW j2uW i , whererW i j is the bond vector at equilibrium,uW i

is the displacement of atomi, anduW i j is the relative displace-
ment of atomsj and i. For phonon vibrations, the condition
thatuW i j !rW i j always applies. Therefore, the polaribility tensor
PJ (RW i j ) can be expressed in powers of the displacementsuW i j
in a Taylor’s expansion. The constant term of this expansion,
i.e., PJ (rW i j ), can be ignored, since the total contribution of
this term from all bonds to the Raman intensity vanishes.
Keeping the first order ofuW i j in the Taylor’s expansion, the
polarizability tensorPJ (RW i j ) can be simplified as the follow-
ing:

PJ ~RW i j !'~uW i j • r̂ i j !@a8~r i j !IJ1g8~r i j !~ r̂ i j r̂ i j 2
1
3 IJ!#

1r i j
21g~r i j !@uW i j r̂ i j 1 r̂ i j uW i j 22~uW i j • r̂ i j ! r̂ i j r̂ i j #,

~2.4!

where a8(r i j ) and g8(r i j ) are derivatives ofa(RW i j ) and
g(RW i j ) with respect touW i j evaluated at the equivalent bond
vector rW i j , respectively, andr̂ i j 5rW i j /r i j .

In the zinc-blende structure, there are four different bond
orientations, so we only need to calculatePJ (RW i j ) for these
four different types of bonds. We can choose the following
four directions as the bond orientations:

r̂ 015
1

A3
~1,21,1!,

r̂ 025
1

A3
~21,1,1!,

r̂ 035
1

A3
~1,1,21!,

r̂ 045
1

A3
~21,21,21!, ~2.5!
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and the four polarizations associated with the four bonds are

PJ ~RW 01!5
1

A3
~u01,x2u01,y1u01,z!F a8S 1 0 0

0 1 0

0 0 1
D 1

1

3
g8S 0 21 1

21 0 21

1 21 0
D G

1
g

3A3 S 4u01,x12u01,y22u01,z 2u01,x1u01,y12u01,z u01,x12u01,y1u01,z

2u01,x1u01,y12u01,z 22u01,x24u01,y22u01,z 2u01,x1u01,y2u01,z

u01,x12u01,y1u01,z 2u01,x1u01,y2u01,z 22u01,x12u01,y14u01,z

D , ~2.6!

PJ ~RW 02!5
1

A3
~2u02,x1u02,y1u02,z!F a8S 1 0 0

0 1 0

0 0 1
D 1

1

3
g8S 0 21 21

21 0 1

21 1 0
D G

1
g

3A3 S 24u02,x22u02,y22u02,z u02,x2u02,y12u02,z u02,x12u02,y2u02,z

u02,x2u02,y12u02,z 2u02,x14u02,y22u02,z 2u02,x1u02,y1u02,z

u02,x12u02,y2u02,z 2u02,x1u02,y1u02,z 2u02,x22u02,y14u02,z

D , ~2.7!

PJ ~RW 03!5
1

A3
~u03,x1u03,y2u03,z!F a8S 1 0 0

0 1 0

0 0 1
D 1

1

3
g8S 0 1 21

1 0 21

21 21 0
D G

1
g

3A3 S 4u03,x22u03,y12u03,z u03,x1u03,y12u03,z 2u03,x12u03,y1u03,z

u03,x1u03,y12u03,z 22u03,x14u03,y12u03,z 2u03,x2u03,y1u03,z

2u03,x12u03,y1u03,z 2u03,x2u03,y1u03,z 22u03,x22u03,y24u03,z

D , ~2.8!

PJ ~RW 04!5
1

A3
~2u04,x2u04,y2u04,z!F a8S 1 0 0

0 1 0

0 0 1
D 1

1

3
g8S 0 1 1

1 0 1

1 1 0
D G

1
g

3A3 S 24u04,x12u04,y12u04,z 2u04,x2u04,y12u04,z 2u04,x12u04,y2u04,z

2u04,x2u04,y12u04,z 2u04,x24u04,y12u04,z 2u04,x2u04,y2u04,z

2u04,x12u04,y2u04,z 2u04,x2u04,y2u04,z 2u04,x12u04,y24u04,z

D . ~2.9!

When we calculate the polarizability tensor for the QD’s,
we sum the polarizability tensor associated with each bond in
the QD’s, and get a scattering tensor

PJ5(
i , j

PJ ~RW i j !. ~2.10!

From the symmetry property, we know that the Raman
tensor in cubic crystals takes the following forms:35

PJA15S a 0 0

0 a 0

0 0 a
D , ~2.11!

PJE5S b 0 0

0 b 0

0 0 22b
D , S A3b 0 0

0 2A3b 0

0 0 0
D ,

~2.12!

PJT25S 0 0 0

0 0 d

0 d 0
D , S 0 0 d

0 0 0

d 0 0
D , S 0 d 0

d 0 0

0 0 0
D .

~2.13!

In our calculations we found that for semiconductor QD’s
with a zinc-blende structure, after we applied the projection
operators,PJ is a constant times a unit matrix for anA1 mode,
a traceless diagonal matrix with two equal matrix elements
for anE mode, and a traceless matrix with only nondiagonal
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matrix elements for aT2 mode. The Raman tensorsPJ for the
QD’s can be expressed in the following forms:

PJA15S Al 0 0

0 Al 0

0 0 Al

D , ~2.14!

PJE5S 2El 0 0

0 2El 0

0 0 2El

D , ~2.15!

PJT25S 0 0 0

0 0 Tl

0 Tl 0
D , ~2.16!

where

Al
25@~P11

l 1P22
l 1P33

l !/3#2, ~2.17!

El
25 1

18 @~P11
l 2P22

l !21~P22
l 2P33

l !21~P33
l 2P11

l !2#,
~2.18!

and

Tl
25@~P12

l !21~P23
l !21~P31

l !2#, ~2.19!

wherePi j
l is the element of the change of the polarizability

resulting from vibration of the QD’s in model as defined in
Eq. ~2.10!.

The Al
2 , El

2 , andTl
2 are invariants of the Raman tensor

and l is an index of the modes. This is consistent with the
Raman tensor in cubic crystals of above@Eqs.~2.11!–~2.13!#.
HereAl

2 is related to the intensity of anA1 mode in polarized
Raman geometry, andEl

2 andTl
2 are related to intensities of

E and T2 modes in depolarized Raman geometry, respec-
tively. For E or T2 modes that are two or threefold degener-
ate, the contributions of the degeneracies are considered in
the total scattering intensity.16,17

For unpolarized incident light with frequencyV scattered
perpendicular to the direction of propagation, the intensities
of Raman-scattered components with frequenciesV6v l are
the following:23

I uu5
~ n̄l1

1
2 6 1

2 !

2v l
g~v l !@7Gl

2145Al
2#, ~2.20!

I'5
~ n̄l1

1
2 6 1

2 !

2v l
g~v l !@6Gl

2#, ~2.21!

wheren̄l is the average occupation number of phonon mode
l, and I uu and I' are intensities of scattered light with polar-
ization parallel and perpendicular to the plane of scattering.
In these equations,Al

2 is the same as defined in Eq.~2.17!,
and

Gl
259El

213Tl
2 . ~2.22!

The Raman-scattering matrix for cubic crystals with arbi-
trary orientations and arbitrary incident and scattering light
wave vectors are studied by using Stokes vectors.36 The
Stokes vectors are defined as the following:

Let the incident elliptic polarization be described as

EW 5~a1 ib !EW A1~c1 id !EW N , ~2.23!

whereEW A andEW N are polarization vectors in and normal to
the scattering plane. These two directions are labeled asAW

andNW , respectively. The Stokes vector is defined as

S a21b21c21d2

a21b22c22d2

2~ac1bd!

2~ad2bc!

D . ~2.24!

For example, for a left-handed circularly polarized light
viewed along the direction of propagation of the light, its
polarization vector isEW 5(1/A2) „iEW A1EW N…, and its equiva-
lent Stokes vector is~1, 0, 0, 21!. From this, the Stokes
parameters of the scattering light are derived choosing four
different combinations of values ofa, b, c, andd. This gives
the complete scattering matrixai j . Assuming that QD’s ori-
ent randomly, all the possible incident directions should be
averaged. Then the scattering matrix forA1 modes is36

ai j 5S 11cos2Q 211cos2Q 0 0

211cos2Q 11cos2Q 0 0

0 0 2 cosQ 0

0 0 0 2 cosQ

D ,

~2.25!

and for bothE andT2 modes it is

ai j

5S 131cos2Q 211cos2Q 0 0

211cos2Q 11cos2Q 0 0

0 0 2 cosQ 0

0 0 0 210 cosQ

D ,

~2.26!

whereQ is the scattering angle.
In our calculations, we have calculatedAl

2 , 9El
2 , and 3Tl

2

according to the right-angle scattering Eqs.~2.20!–~2.22!.
For different incident light and scattering configurations, the
Raman intensities are the linear combination of these three
according to their Stokes vectors.

III. RESULTS AND DISCUSSION

In this paper we report calculated reduced Raman-
scattering intensity,v l I /(n̄l1

1
2 6 1

2 ), for Si QD’s with diam-
eters from 15 to 76 Å. Sincea8, r i j

21g, and g8 are not
accurately knowna priori, these parameters used in our cal-
culations satisfy23
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r i j
21g~r i j !5 3

8 g8~r i j !5 3
8 a8~r i j !. ~3.1!

We noticed that in the early calculations of amorphous
Si,23 a8.0 was assigned because the observed intensity pro-
files I i and I' of Si have the same shape. Ifa850, there
would be no contribution to Raman intensity fromA1 modes.
However, when the size of QD’s is small, the contribution
from A1 modes might be important to consider, so we have
assigneda8 a number as above. The choice of this number is
not critical, since for different choices ofa8, the shape of
Raman intensity from theA1 contribution is the same, and
only its relevant strength toE andT2 modes is different.

We have calculated Raman intensities ofA1 , E, and T2
modes for Si QD’s with approximate sizes of 15, 20, 25, 30,
35, 40, 50, 60, 70, and 76 Å, respectively, and the results are
shown in Figs. 1–3. Here the Raman intensityI is calculated
by the Lorentz broadening

I 5(
l

I lG/p

~G!21~v2v l !
2

, ~3.2!

where I l and v l are the scattering intensity and eigenfre-
quency of model, respectively, andG is the half Lorentz
width, which is taken as 2/p50.64 cm21 in our calcula-
tions. We have also listed the related important data in Table
I that are numerically more clear. The data listed in Table I in
order are the diameters of the QD’s calculated (d), the num-
ber of atoms in the QD’s (N), the intensity of the highest

peak ofA1 modes (I A1), the intensity of the highest peak of
E modes (I E), the intensity of the highest peak ofT2 modes
in the low-frequency range@ I T2( l )# and in the high-
frequency range@ I T2(h)#, the frequency of the first peak of
A1 modes (vA1), the frequency of the first peak ofE modes
(vE), the frequency of the first peak ofT2 modes in the
low-frequency range@vT2( l )#, and the frequency of the
highest peak ofT2 modes in the high-frequency range
@vT2(h)#. All the intensities listed above are Raman inten-
sity per atom for easier comparison. We will discuss the im-
portant features of these results in detail next.

A. Size effects of highest frequencies

From Figs. 1–3 we see that in general, the major peaks in
the high-frequency range always haveT2 symmetry. The
highest peaks correspond toT2 phonon modes with the high-
est frequencies. When the size of the QD’s increases, this
frequency approaches the frequency of the optical-phonon
frequency of bulk Si. Theoretically speaking, when the size
of QD’s approaches infinity, the total Raman spectrum of
QD’s approaches the Raman spectrum of bulk Si, and this
will be the only peak left.

In our previous calculations of phonon modes in
QD’s,12–15we have discussed the size dependence of phonon
modes with different symmetries. We have learned that pho-
non modes with different symmetries have different size de-
pendence, andA1 modes usually have the strongest size ef-
fect. For quantum dots of zinc-blende semiconductors, such

FIG. 1. Reduced Raman intensities ofA1 modes for Si QD’s
with approximate diameters in angstrom indicated.

FIG. 2. Reduced Raman intensities ofE modes for Si QD’s with
approximate diameters in angstrom indicated.
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as GaAs, when the size of QD’s is large, the mode with the
highest frequency hasA1 symmetry. However, as the dot size
decreases, there is a crossover of the symmetries, and then
the mode with the highest frequency hasT2 symmetry. For
Si quantum dots studied in the present paper, the mode with
the highest frequency is always ofA1 symmetry. However,

the Raman intensity ofA1 modes decreases when the dot size
increases, so the strongest high-frequency mode is always of
T2 symmetry.

When the size of QD’s decreases, the frequency of thisT2

peak decreases. To show this more clearly, we enlarged the
high-frequency range of Fig. 3 and plotted it as Fig. 4. From
the data listed in Table I, we know that when the diameter of
Si QD’s decreases from 75.79 Å to 14.11 Å, the frequency
of the highest Raman peak shifts from 518.3 cm21 to
506.4 cm21 ~the Raman peak of bulk Si is at 518.9 cm21 in
our model!. The systematic redshift of the longitudinal~LO!
phonon peaks due to spatially confined phonon modes in
nanocrystals in the size range of a few nanometers has been
observed,19–21and recently it has been observed by resonant
Raman scattering in three samples of Ge nanocrystals in the
size range of 4–10 nm.18 One more thing we notice from
Fig. 3 and Fig. 4 for the high-frequency peaks ofT2 modes is
that not only do the highest intensity peak redshifts occur as
dot size decreases, but also weaker peaks appear at the same
time.

Experimentally it may be difficult to resolve all the
weaker peaks because of broadening resulting from fluctua-
tion in dot sizes. As a result one may observe an asymmetric
broadening of the Raman peak corresponding to the optical
phonon as the dot size is reduced. This is indeed found in
Raman intensities of Ge QD’s.37 One may attempt to intepret
this as an indication that the quality of the dots may be
poorer leading to larger inhomogeneous broadening as the
dot size gets smaller. However, from our calculations on Ra-
man intensities of QD’s, one can notice that the redshift of
the strongestT2 Raman peak is smaller than the frequency
spread of the weaker peaks which appear. In other words the
broadening of the Raman peak is larger than the redshift as
the dot size decreases. This indicates that the observed
broadening in Raman measurements is not only due to the

FIG. 3. Reduced Raman intensities ofT2 modes for Si QD’s
with approximate diameters in angstrom indicated.

TABLE I. Raman intensities ofA1 , E, andT2 modes for Si QD’s with approximate sizes of 15, 20, 25,
30, 35, 40, 50, 60, 70, and 76 Å. The data listed in order are the diameters of the QD’s (d), the number of
atoms in the QD’s (N), the intensity of the highest peak ofA1 modes (I A1), the intensity of the highest peak
of E modes (I E), the intensity of the highest peak ofT2 modes in the low-frequency range@ I T2( l )#, the
intensity of the highest peak ofT2 modes in the high-frequency range@ I T2(h)#, the frequency of the first
peak ofA1 modes (vA1), the frequency of the first peak ofE modes (vE), the frequency of the first peak of
T2 modes in the low-frequency range@vT2( l )#, and the frequency of the highest peak ofT2 modes in the
high-frequency range@vT2(h)#. All the intensities listed here are Raman intensity per atom.

d N IA1 I E I T2( l ) I T2(h) vA1 vE vT2( l ) vT2(h)

14.11 87 7.65 9.70 10.99 9.88 129.8 46.7 58.8 506.4
19.39 191 5.88 5.58 6.61 9.60 98.4 35.2 46.9 511.2
24.74 417 3.55 3.53 4.79 9.47 83.3 27.2 37.5 514.3
29.75 705 2.69 2.76 3.66 9.22 69.0 23.3 31.2 515.6
34.67 1099 2.46 2.03 2.64 9.25 61.4 19.7 26.6 516.5
39.91 1707 1.84 1.51 1.97 9.24 53.2 16.9 22.9 517.1
50.00 3265 1.27 1.01 1.34 9.47 43.2 13.4 18.8 517.7
59.99 5707 0.91 0.72 0.93 9.67 36.0 10.9 15.5 518.1
69.97 9041 0.68 0.54 0.69 10.04 30.9 9.2 13.4 518.3
75.79 11489 0.58 0.46 0.59 10.26 28.6 8.6 12.4 518.3
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redshift of the peak alone, but there is also a contribution to
this broadening from quantum size effects.

B. Size effects of lowest frequencies

From Figs. 1–3, we see that the frequency of the first
peak in the low-frequency range for all three different sym-
metries (A1 , E, and T2) increases as the size of the QD’s
decreases. From the data listed in Table I, we see that when
the size of Si QD’s decreases from 75.79 Å to 14.11 Å, the
frequency of the first Raman peak ofA1 modes shifts from
28.6 cm21 to 129.8 cm21, the first Raman peak ofE modes
shifts from 8.6 cm21 to 46.7 cm21, and the first Raman
peak with T2 symmetry shifts from 12.4 cm21 to
58.8 cm21. The size effects of lowest frequencies of phonon
modes in QD’s have been discussed in detail in our previous
studies,12–15and again this is shown in the calculated Raman
spectra. Furthermore, we notice that even though the fre-
quencies of the lowest-frequency peak increase in all these
three figures, they increase at a different rate. The lowest-
frequency of theA1 peak increases much faster than that of
the other two. To show this more clearly, we plot the lowest
frequency peaks versus the sizes of QD’s in Fig. 5. It is
obvious that the lowest frequency of theA1 peak increases
much faster than that of the other two, because theA1 modes
have the strongest quantum confinement effects.12,13

Another feature of Fig. 5 is that the lowest frequencies of
the Raman peaks in the acoustic range are roughly propor-
tional to the inverse of the QD diameters, which was ob-

served by Duval.2 This was recently observed in Si
nanocrystals,38 and it was noticed that the depolarized Ra-
man spectra appear at much lower frequencies than the po-
larized ones. Not only do our results agree with the experi-
mental observations, but we also learned that this is actually
due to the symmetry dependence of the confinement effect of
phonon modes, i.e., theA1 modes have the strongest confine-
ment effects.

C. Folding of the acoustic phonons

In Fig. 1, we see that at the low-frequency range of theA1
modes, the Raman spectra are dominated by a series of
nearly evenly spaced peaks in the acoustical phonon range.
As the size decreases, the spacing increases. This can be
understood from the folding of acoustic phonons. Since the
A1 modes vibrate in the radical direction, when the radius of
the QD’s increases approximately one lattice constant, there
will be one more folding due to the confinement of the QD’s
along the radial direction. This should be observable by Ra-
man scattering, and we are expecting such observations.

D. Size effects on strength of Raman peaks

Since Raman intensities plotted in Figs. 1 –3 are in arbi-
trary units, the size effects on the strength of Raman peaks
are not shown clearly in these figures. To show them more
clearly, we have plotted the Raman intensity per atom versus
diameters of QD’s for the low-frequencyA1 peaks, the low-
frequencyE peaks, the low-frequencyT2 peaks, and the
high-frequencyT2 peaks in Fig. 6. ForA1 Raman spectra
there are several high peaks, and we choose the strength of
the highest peak~when the size is less than 30 Å, this peak
is not the peak with the lowest frequency!. In Fig. 6 we see
that the strength of low-frequency peaks (A1 , E, and T2)
decreases quickly as the size of QD’s increases, and the
strength of high-frequency peaks (T2) remains a constant in
QD’s of all sizes. This indicates that even though in bulk
material only one major peak can be measured, when the size
of QD’s decreases, other peaks in the low-frequency range

FIG. 4. Reduced Raman intensities ofT2 modes enlarged at the
high-frequency range for Si QD’s with approximate diameters in
angstrom indicated.

FIG. 5. Frequency of the lowest Raman peak ofA1 , E, andT2

modes versus size of the dots for Si QD’s.
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will appear. Of these low-frequency Raman peaks, the most
noticeable ones are probably the evenly spacedA1 peaks in
the polarized spectra. Such evenly spacedA1 peaks should
be observable.

We want to emphasize that in Fig. 6, the Raman intensity
shown is from one calculated highest Raman peak, either in
the low-frequency range or in the high-frequency range. Ex-
perimentally the presence of multiple Raman peaks as shown
in Figs. 1–4 may not be resolvable due to size fluctuation,
and instead a broadened peak is observed. Typically in such
a situation all the Raman intensity should be integrated to
obtain the total strength of the Raman peak. To compare with
the experimental results, we summed the calculated Raman
intensities~without broadening! for all A1 , E, andT2 modes,
respectively, and show them for QD’s with different sizes in
Fig. 7. We can see that all the Raman intensities will increase
when the size of QD’s gets smaller. When the QD’s get
larger, the Raman intensity ofT2 modes will approach the
Raman intensity of bulk crystal and others will approach
zero. This is in qualitative agreement with what was ob-
served in Ge QD’s.37

E. Size effects on mode mixing

One more thing we want to comment on from Figs. 1–3
and Fig. 6 is that for large size QD’s, the major peak of the
Raman spectra is derived from theT2 high-frequency mode.
This peak approaches the optical-phonon peak in the bulk
Raman spectra when the size of QD’s is large. When the size
of QD’s decreases, more and stronger peaks at the lower-
frequency range appear, which are derived from theA1
modes in the polarized Raman spectra andE andT2 modes
from the depolarized Raman spectra. As can be seen from
Figs. 1–3 and Fig. 6, the intensities of theA1 , E, and T2
modes are of nearly the same magnitude for small dots,
which indicates the mode mixing due to the quantum con-
finement of phonon modes in small QD’s.

IV. SUMMARY

In summary, we have calculated the Raman intensities of
Si QD’s with up to 11 489 atoms~about 7.6 nm in diameter!.
The phonon modes are calculated directly from the lattice-
dynamic matrix of a microscopic VFFM by employing the
projection operators of the irreducible representations. Based
on the results of phonon modes, the Raman intensities are
calculated by using a BPA. The size effects of the Raman
intensity in QD’s are discussed in detail based on these cal-
culations. Our calculated results agree with the existing ex-
perimental observations, and we are expecting that our cal-
culations will stimulate more experimental measurements of
Raman intensities of QD’s.
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FIG. 6. Raman intensity per atom of the highest low-frequency
peaks ofA1 , E, andT2 modes and the highest high-frequency peaks
of T2 modes versus size of the dots for Si QD’s.

FIG. 7. Integrated Raman intensity per atom ofA1 , E, andT2

modes versus size of the dots for Si QD’s.
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