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ABSTRACT

Wiskott—Aldrich Syndrome protein (WASp) regulates the cytoskeleton in hematopoietic cells and mu-
tations in its gene cause the Wiskott—Aldrich Syndrome (WAS), a primary immunodeficiency with
microthrombocytopenia, eczema and a higher susceptibility to develop tumors. Autoimmune manifes-
tations, frequently observed in WAS patients, are associated with an increased risk of mortality and still
represent an unsolved aspect of the disease. B cells play a crucial role both in immune competence and
self-tolerance and defects in their development and function result in immunodeficiency and/or auto-
immunity. We performed a phenotypical and molecular analysis of central and peripheral B-cell com-
partments in WAS pediatric patients. We found a decreased proportion of immature B cells in the bone
marrow correlating with an increased presence of transitional B cells in the periphery. These results
could be explained by the defective migratory response of WAS B cells to SDF-1a, essential for the
retention of immature B cells in the BM. In the periphery, we observed an unusual expansion of CD21!°%
B-cell population and increased plasma BAFF levels that may contribute to the high susceptibility to
develop autoimmune manifestations in WAS patients. WAS memory B cells were characterized by a
reduced in vivo proliferation, decreased somatic hypermutation and preferential usage of IGHV4-34, an
immunoglobulin gene commonly found in autoreactive B cells.

In conclusion, our findings demonstrate that WASp-deficiency perturbs B-cell homeostasis thus
adding a new layer of immune dysregulation concurring to the increased susceptibility to develop
autoimmunity in WAS patients.

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.

1. Introduction

Wiskott—Aldrich Syndrome (WAS) is a monogenic X-linked
primary immunodeficiency characterized by the classic triad of

% This is an open access article under the CC BY-NC-ND license (http:// microthrombocytopenia, eczema and recurrent infections. Multiple

creativecommons.org/licenses/by-nc-nd/3.0/).
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TIGET), Via Olgettina 58, Milan 20132, Italy. Tel.: +39 02 26435273; fax: +39 02

26434668.

E-mail address: villa.anna@hsr.it (A. Villa).

autoimmune manifestations and tumors are serious complications
and the life expectancy of WAS patients is severely reduced, unless
they are successfully cured by hematopoietic stem cell trans-
plantation [1].

0896-8411 © 2013 The Authors. Published by Elsevier Ltd. Open access under CCBY-NC-ND license.
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WAS is caused by mutations in the WAS gene [2,3] impairing
the expression and/or function of the WAS protein (WASD),
a hematopoietic-specific regulator of cytoskeletal reorganization
also involved in signal transduction of cells [4]. The absence or
reduction of WASp compromises multiple processes of different
immune cell types involved in innate and adaptive responses,
resulting in a variable and progressive immunodeficiency. Auto-
immune complications affect 22—72% of WAS patients and are
associated with poor prognosis [5,6]. Susceptibility of WAS patients
to develop autoimmune diseases has been mainly attributed to the
breakdown of self tolerance sustained by dysfunction of both nat-
ural T regulatory and effector T cells (reviewed in Ref. [ 7]). However,
B-cell intrinsic defects have been demonstrated to critically
contribute to WAS-associated autoimmunity in Was™”~ mouse
model [8,9]. In humans, the contribution of B-cell defects in the
pathogenesis of WAS has been partially investigated. B cells from
patients exhibit lower motility, migratory and adhesive capacities
[10], likely due to defective F-actin nucleation [11]. In contrast,
despite the role of WASp in B-cell receptor (BCR) signaling [7,12],
abnormalities in B-cell activation still remain controversial [13,14].
A skewed distribution of serum immunoglobulin (Ig) classes [5]
and the inability to mount a proper antibody response, particu-
larly to T-cell independent (TI) antigens [15], suggest defects in B-
cell effector function.

Previous findings in WAS patients [16,17] show phenotypical B-
cell perturbations in the periphery. In order to evaluate whether an
abnormal B-cell development might generate a B-cell repertoire
unable to unsure full protection against pathogens and tolerance
against self-antigens, we have further studied the B-cell compart-
ment in WAS patients. To this end, we have combined a detailed
phenotypical analysis of B-cell maturation stages, from the bone
marrow (BM) to the periphery, with a molecular study of Ig
repertoire and in vivo B-cell maturation processes in a large cohort
of WAS pediatric patients. Our data show that WASp-deficiency
affects critical stages of central and peripheral B-cell differentia-
tion contributing to abnormalities in humoral immunity and B-cell
tolerance in humans.

2. Material and methods
2.1. Patients

The diagnoses were clinically defined and confirmed by genetic
analysis. A description of all patients is reported in Supplementary
Table 1. Human samples were obtained according to The Code of
Ethics of the World Medical Association (Declaration of Helsinki)
with the approval of the local Medical Ethical Committees of the
Erasmus MC and the San Raffaele Scientific Institute Internal Review
Board (TIGET02). All legal representatives gave written informed
consent. All results obtained from samples of WAS patients were
compared to age and sex matched healthy donors (HDs).

2.2. Flow cytometry and purification of B-cell subsets

The composition of the precursor B-cell compartment was
analyzed by flow cytometric immunophenotyping as described in
the Supplementary Material. For the analysis of replication his-
tory and somatic hypermutation, four B-cell subsets were isolated
from thawed peripheral blood mononuclear cells (PBMCs) using
a FACS DiVa cell sorter (BD Biosciences) [18]. Gating on CD19"
cells, transitional (CD27 CD24MehcD38MeM)  mature naive
(CD27 1gD*CD249™CD38%9™)  natural effector (CD27*1gD") and
memory (CD27"IgD™) B-cell subsets were sorted with a purity of
>95% for all fractions. For intracytoplasmic detection of human
WASp, cells were fixed and permeabilized using a Cytofix/

Cytoperm kit (BD Pharmingen, Oregon, USA). The anti-WASp
antibody 503 (a kind gift from Prof H. D. Ochs, Seattle, WA, and
L. D. Notarangelo, Boston, MA) was used, followed by detection
with Pacific Blue-labeled anti-rabbit IgG secondary antibody
(Invitrogen, San Diego, USA). Samples were acquired on a FACS-
Canto cytometer.

2.3. Chemotaxis assay

CD20 positive cells were purified from PBMCs of pediatric
WAS patients and age-matched HDs by immunomagnetic beads
(Miltenyi Biotec, Germany) or FACS sorting. The purity of the
isolated cells were analyzed by FACS and ranged from 84% to
98%. After isolation, cells were left overnight at 37 °C in culture
medium composed of RPMI-1640, 10% FBS, 2 mM glutamine,
100 IU/mL penicillin and 100 pg/mL streptomycin (Lonza, Basel,
Switzerland). In vitro chemotaxis assay was performed using 5 uM
pore-size Transwell inserts (Costar Corporation, Corning, NY, US)
in 24-well plates. Filters were prewet 30 min at 37 °C in presence
of 600 pL of medium supplemented with 250 ng/mL of recom-
binant human stromal cell-derived factor (SDF)-1a (CXCL12;
Peprotech, Rocky Hill, US). Fifty thousand CD20 positive or
negative cells were resuspended in 100 pL of culture medium,
seeded in the upper chamber and incubated at 37 °C for 3 h.
Transmigrated cells, collected in the lower chamber, were coun-
ted for viable cells and stained with anti-CD19, anti-CD24, anti-
CD38, anti-CD27 and anti-CD3 (BD Biosciences) for the pheno-
typical analysis by FACS. Migration frequency was estimated as
the [(cell n° at the lower chamber/the initial B cell input in the
upper chamber) x 100].

2.4. ELISA assay

Levels of B-cell activating factor (BAFF) were measured in
duplicate in plasma samples of WAS patients and HDs using a
Quantikine Human BAFF/BLyS/TNFSF13B Immunoassay kit (R&D
Systems, Minneapolis, USA). The assay was performed according to
manufacturer’s instructions and the OD was determined using a
microplate reader set to 450 nm.

2.5. Sequence analysis of Igk and IGH gene rearrangements

RNA was isolated from PBMCs and reverse-transcribed using
random hexamers. Igk and IGH gene rearrangements were ampli-
fied and analyzed as described in the Supplementary Material.

2.6. Analysis of replication history by KREC assay

DNA was extracted from sorted B-cell subsets with the GenElute
Mammalian Total DNA Miniprep kit (Sigma—Aldrich) and used to
perform the Igk-deleting recombination excision circles (KREC)
assay [19]. The amounts of coding and signal joints of the Igik-de-
leting rearrangement were measured by real-time quantitative PCR
on an ABI Prism 7000 sequence detection system (Applied
Biosystems).

2.7. Analysis of somatic hypermutation by IgkREHMA

Igk restriction enzyme-based hot-spot mutation assay
(IgkREHMA) was performed on genomic DNA isolated from sorted
B-cell subsets [19]. Briefly, Vk3-20-Jk rearrangements were PCR-
amplified and the PCR products (~500 bp) were first digested
using the restriction enzyme Fnu4HI and then Kpnl. The unmutated
gene products can be visualized as 244 or 247 bp HEX-coupled
fragments and the mutated as 262 bp HEX-coupled fragment.
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2.8. Statistical analyses

All results are expressed as mean and SD if not stated otherwise.
Statistical significance was assessed using a two-tailed Mann
Whitney test. Comparisons between proportions were calculated
by using the chi-square test (x? test) (with continuity correction). P
values of less than 0.05 were considered significant.

3. Results

3.1. Altered distribution of the precursor B-cell compartment in the
bone marrow of WAS patients

Until now, the composition of the B-cell compartment in the
BM of WAS patients has not been reported. To evaluate the effect
of WASp-deficiency on B-cell development in the BM, we char-
acterized five stages of B-cell differentiation [20] in three WAS
patients. We observed a decreased frequency of immature B
lymphocytes in WAS patients (Fig. 1A). This observation was
further assessed in four additional patients, focusing on late
stages of B-cell differentiation based on the expression of CD10
and CD20 [21] (gating strategy is shown in Suppl. Fig. 1). We
confirmed a significant decrease in the frequency of immature B
cells compared with age-matched HDs (Fig. 1B). In addition, at the
earliest differentiation stages, we observed a significant increase
of small Pre-B-II cells in WAS patients; while no statistical dif-
ference was detected in large Pre-B-II cell frequency (Fig. 1C).
These findings might reflect a partial block in the BM B-cell dif-
ferentiation between the small Pre-B-Il and immature B-cell
stages in WAS, or an early egress of immature B cells into the
periphery.

3.2. Perturbed peripheral B-cell maturation in WAS patients

Next we examined the distribution of B-cell subsets in the pe-
ripheral blood of WAS patients and age-matched HDs. When
available, we evaluated the absolute count of total B cells, which was
found significantly reduced in patients less than three years old
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(<3y), while no differences were observed in the older WAS group
(Fig. 2A) confirming previously published results [16]. Four B-cell
subsets were identified according to the expression of CD24, CD38,
IgD and CD27: transitional, mature naive, memory and plasmablasts
(Fig. 2B). Transitional B cells (CD24"CD38M) are the most immature
peripheral B-cell population that were significantly increased in
both WAS age groups as frequency (Fig. 2C) and absolute number
(Suppl. Fig. 2). The next maturation stage, represented by mature
naive B cells (CD27 IgD*CD24%™cD389™) was significantly
decreased only in WAS patients less than 3 years old both in fre-
quency (Fig. 2C) and absolute number (Suppl. Fig. 2). Finally, the
frequency of plasmablasts (CD24 CD38") was significantly
increased in the older group of patients (Fig. 2C), while the absolute
number of both memory B cells (CD27"1gD~CD24%™cD38%M) and
plasmablasts were significantly decreased in the younger group of
WAS patients (Suppl. Fig. 2).

Altogether, these findings demonstrate that WAS patients have a
perturbed peripheral B-cell distribution.

3.3. B lymphocytes from WAS patients display a reduced migratory
ability in response to SDF-1a

The overrepresentation of transitional B cells in the blood of
WAS patients led us to hypothesize that an early egress of
immature B cells from BM could occur. CXCR4, the chemokine
receptor for SDF-1¢0, has an important role in retaining B-cell
precursors within the BM in order to prevent premature migra-
tion to the periphery [22—24]|. We tested the chemotactic
response to SDF-1a of B lymphocytes of WAS patients and HDs by
transwell migration assay. As shown in Fig. 3, both transitional
and mature peripheral B cells were less responsive to SDF-1a
in the absence of WASp (Fig. 3A—C). This defect was specific for
B lymphocytes since CD3 positive cells of WAS patients showed a
normal migratory capacity to SDF-1a (Suppl. Fig. 3). Thus, we
hypothesize that a diminished retention signal mediated by
CXCR4/SDF-1¢. could explain the premature egress of immature
B cells from the BM leading to an increase of transitional B cells in

periphery.
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Fig. 1. Reduced frequency of immature B cells in WAS BM samples. A. The precursor B-cell differentiation pattern in the BM was analyzed by flow cytometry (corrected for blood
contamination) and compared with the average values of age-matched HDs (y = years). B—C. Frequencies of Immature B cells (CD10™CD20*) (B), Pre-B-II small (CD10™CD20 ") and
Pre-B-II large (CD10™CD20™) cells (C) were determined on CD34 CD19* cells and calculated on total BM precursor B cells excluding recirculating mature B cells (CD10~CD20™*).
The graphs show data points for all examined donors and patients. ***P < 0.0001; **P = 0.0029. (HD, n = 27; WAS, n = 7).
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Fig. 2. Perturbed peripheral B-cell maturation in WAS patients. A. Absolute counts of CD19" cells of WAS patients (black dots) and age-matched HDs (white dots) were analyzed
when available. B. Representative plots of flow cytometric analysis of blood B-cell subsets of a HD and a WAS patient (age range: <3y) are shown. C. Graphs display frequencies of
the four main B-cell subsets in the blood of WAS patients and age-matched HDs. Individual data points are displayed with mean and SD. Groups are compared to controls and
significant values are indicated: ***P < 0.0005; **P < 0.005; *P < 0.05. (HD < 3y, n = 29; HD 3—12y, n = 27).

3.4. WAS patients display alterations in potentially autoreactive
B-cell subsets and elevated B-cell activating factor plasma levels

To further characterize the peripheral B-cell distribution, we
focused our analysis on B-cell subsets found expanded in autoim-
mune diseases and potentially autoreactive [25—28]. We found a
significant increase of CD197CD21-CD35" subset in both WAS age
groups (Fig. 4A), confirming data previously reported by Park
and colleagues [17]. We also analyzed the frequency of
CD19+CD21-CD38" cells (referred to as CD21'°%) described to be
expanded in autoimmune diseases and immunodeficiencies [26,27]
[29]. Interestingly, we observed that the frequency of this unusual
population was markedly increased in WAS patients, both in the
younger and older groups (Fig. 4B). In addition, higher levels of
soluble BAFF were found in the plasma of WAS patients as
compared to pediatric HDs (Fig. 4C). This finding was also associ-
ated with a decreased expression of its receptor, BAFFR, in transi-
tional B cells of WAS patients (Fig. 4D). Because of the role of BAFF
in B-cell homeostasis and peripheral B-cell tolerance [30,31], high
BAFF levels may affect the stringency of peripheral B-cell selection

thus favoring the survival of B-cell subsets containing potentially
autoreactive clones.

3.5. WASp-deficiency affects antigen-dependent B-cell
differentiation and maturation

In order to evaluate the effect of WASp-deficiency in an antigen
dependent context, we analyzed in detail the memory B-cell
compartment of WAS patients. We identified six distinct memory
B-cell subsets [32] (gating strategy is shown in Suppl. Fig. 4):
CD27tIgM*IgD™ (also named “IgM-only”) and CD27 IgG" deriving
from primary germinal center (GC) responses; IgG" CD27" and
IgA*™ CD27" switched memory B cells originating from secondary
GC responses; CD27'IgD" (named “natural effector”) and
CD27 IgA" generated in a TI manner in the gastrointestinal tract or
in the splenic marginal zone area, respectively [33]. We did not
observe differences in memory B-cell populations deriving from
both primary and secondary GC responses between WAS patients
and HDs (Fig. 5A—B). A marked reduction in natural effector B cells
was found in both age groups of WAS patients both as frequency
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Fig. 3. Reduced in vitro migration to SDF-1a. of B cells from WAS patients. CD20 positive cells were isolated from PBMCs of WAS patients (black bars; n = 4) and age matched HDs
(white bars; n = 5) and subjected to the chemotaxis assay in the presence of 250 ng/mL of SDF-1a. or medium alone. The percentage of migrated CD19" cells (A),
CD19*CD24"CD38" transitional (B) and CD19*CD24%™CD384™ mature B cells (C) were determined by flow cytometric analysis. The graphs summarize three independent ex-
periments and represented as bars with mean and SEM. WAS Groups are compared to HDs and statistically significant values are indicated: **P < 0.005; *P < 0.05.

(Fig. 5C) and absolute number (Suppl. Fig. 5). The frequency of
CD277IgA™ B cells was decreased in 3—12 years old patients
compared with HDs (Fig. 5C). In conclusion, the absence of WASp
mainly affects TI responses of B cells, whereas only mildly impairs
the generation of early memory B cells in GC without influencing
the class-switched memory B-cell compartment.

We determined the in vivo B-cell proliferation history by KREC
assay and in parallel SHM by IgkREHMA in sorted transitional,
mature naive, natural effector and memory B cells. As expected,
transitional B lymphocytes did not undergo cell divisions and

mature naive B cells had a limited number of cell divisions in HDs
(Fig. 6A). In HDs both B-cell subsets were characterized by the
absence of SHM (Fig. 6B) and we did not find differences in tran-
sitional and mature naive B cells of WAS subjects (Fig. 6A—B). In
contrast, the memory compartment showed less proliferation in
WAS memory B cells in association with a reduced SHM level
(Fig. 6A—B). Interestingly, the defect in maturation was even more
pronounced in natural effector WAS B lymphocytes. To study SHM
also in the Ig heavy chain (IGH), we analyzed the frequency of
mutated nucleotides in rearranged Variable region of IGH (IGHV)
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Fig. 4. Presence of B-cell populations potentially autoreactive with increased BAFF levels in WAS patients. A-B. Representative plots (left panels) and relative graph (right panel)
show the decreased expression of CD21 and CD35 (A) and the frequency of CD21'°" B cells (B) gated on CD19* cells in WAS patients. Individual data points are displayed in the
graphs. C. Bar graph, with mean and SD, shows BAFF levels in plasma of WAS patients and HDs with an age range of 0—5 year old. D. Histogram shows the expression of BAFFR in
transitional B cells of representative WAS (Pt20, gray line) and HD (black line) subjects. Solid gray curve is the unstained control. Bar graph shows the mean fluorescence intensity
(MFI) of BAFFR. Significant values compared to normal controls are indicated: ***P < 0.0005; **P < 0.005; *P < 0.05.
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genes by cloning and sequencing the most frequent IGHV sub-
groups, the IGHV3 and IGHV4 gene families [34], of both y- and a-
chain of Constant regions (Cy and Ca.). The mutational frequency of
WAS B cells was significantly lower for both Cy and Ca. transcripts in
all domains of V region (Fig. 6C and Suppl. Fig. 6). Thus, the
decreased in vivo proliferation and SHM levels of WAS memory B
cells could be responsible of a lower protection against infections
and persistence of pathogens that finally lead to autoimmunity.

3.6. Altered selection of antibody repertoire in B cells from WAS
patients

Next we studied the IGHV gene repertoire within the IGHV3 and
IGHV4 subgroups. WAS B cells showed an increased frequency of
IGHV3-30 in both Ig classes (Fig. 7A and Suppl. Fig. 7A) and the
absence of IGHV3-48 genes in Ca sequences (Suppl. Fig. 7A). In
IGHV4 transcripts, we noticed a dominant usage of the IGHV4-34
genes in WAS Cy (Fig. 7B) and Ca transcripts (Suppl. Fig. 7B), also
characterized by lower mutation frequency (Fig. 7C) [35]. Moreover,
the antibody repertoire of WAS B cells was devoid of IGHV4-59, a
gene commonly used in B cells from HDs [36]. The distribution of D
families was only slightly altered in WAS patients (Suppl. Fig. 7C—D).

Finally, we evaluated the CSR process in total B cells by analyzing
the frequency of Ig subclasses in sequenced IGH transcripts. A
preferential usage of y-chain C region 3 (Cy3) and Cy1, IGH-
proximal genes (the IGH locus is schematized in Fig. 7D), accom-
panied by a reduction in the expression of distal Cy2 and Cy4, were
detected in WAS patients (Fig. 7E). The analysis of IgA transcripts
showed no significant difference in the subclass usage (Fig. 7E). In
conclusion WAS patients show a skewed Ig gene usage suggesting
an altered selection of the antibody repertoire during B-cell
development.

4. Discussion and conclusions

We reported herein that WASp-deficiency affects many aspects
of B-cell development, first in the BM and then in the periphery.
Indeed, precursor B-cell as well as memory B-cell development and
selection appear affected by the absence of functional WASp.

In the BM we have observed a decreased frequency of immature
B cells, while in the periphery an overrepresentation of transitional
B cells likely due to a reduced retention in the BM and/or a
decreased migration to peripheral lymphoid tissues. The interac-
tion of the chemokine receptor CXCR4 with its ligand SDF-1a. is
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Fig. 6. Defective in vivo B-cell maturation processes in WAS. A. Number of cell divisions was determined by KREC assay performed on DNA samples isolated from sorted peripheral
B-cell subsets of 5 WAS patients (black bars) and 10 HDs (white bars). B. Frequency of somatic hypermutation, expressed as percentage of mutated hotspot in any rearranged IGkV3-
20 gene segment, was determined by IgkREHMA on the same DNA samples. Bars represent mean values + SEM. Significant values are indicated. ***P < 0.0005; **P < 0.005;

*P < 0.05. C. Frequencies of mutated nucleotides in rearranged IGHV genes subdivided

for y- or a-chain constant regions (Cy or Ca) are shown. All individual data points are shown

as white (HD) or black (WAS) dots and total number of analyzed sequences is reported in brackets. Differences between each WAS group compared with age-matched HDs

(***P < 0.0001).

required for the retention of developing B cells in the BM [22,24].
WASp is actively involved in CXCR4 signaling [37—39] and Was ™/~
murine B cells show defective migratory response to SDF-1a [10].
Consistently, here we demonstrate in WAS patients that B cells

migrate less to SDF-1a. Thus, WAS immature B cells could be unable
to properly sense retention signals derived from CXCR4 in the BM
leading to a premature release in the periphery. The increase of
transitional B cells could also reflect an altered migration to the

w
W
5
o
W
<«
<
N

a

=)
i

O mut
Il not mut

DA o ®
T T L P

<

A _& 0 HD Cy (26) "
g é 1 mWAS Cy (47) —
55 -

83 1
2 2 30
%
SNIEE
5% |
— g 0;
7 11 15 21 23 30
B < _ OHD Cy (37)
5 E 1 m WAS Cy (100)
g0 454
on — ] s
3? ] I
22 30
&5 ]
< © 7 i
> & 15 3
E Q ]
9
=3 0]
s 4 30-2/4 31 34 39 59

Cu Cs Cy3 Cyl e

D V DI
_.:|: Su Sy3 Syl Sal

E

HD WAS
‘

OIgG3 OIgGl WIgG2 MIgG4

Fig. 7. Skewed Ig gene usage of WAS B cells. A-B. Graphs show the frequency of IGHV3 (

% of IGHV4-34 sequences

61 HD WAS

Cal Py

Cy

Cy4 e Ca2
a2

C
Se

2
Sy4

Sy2

HD WAS

OIgAl WEIgA2

F

A) and IGHV4 (B) genes used by IgG of HDs (panel A, n = 7; panel B, n = 5) and WAS patients

(panel A—B, n = 12). Total number of analyzed sequences is reported in brackets. C. Graph indicates the percentage of mutated (W7, A23, Y25 positions) or not mutated IGHV4-34

sequences within the FR1 region. D. Schematic representation of the constant region of

the human IGH locus. E—F. Percentage distribution of IgG (E) and IgA (F) receptor subclasses

used in IGH rearrangements of B cells are represented in the pie charts reflecting their order in the human IGH locus. Total number of analyzed sequences is indicated in the center

of each pie. Differences were statistically analyzed by x? test (*P < 0.05).



M.C. Castiello et al. / Journal of Autoimmunity 50 (2014) 42—50 49

peripheral lymphoid organs resulting in a prolonged persistence in
the circulation. Consistently, our data allow us to exclude that the
expansion of transitional B cells is due to homeostatic proliferation
since we demonstrated the absence of replication history in this
subset.

Transitional B cells are found expanded in immunodeficient
conditions [40] or autoimmune diseases [41] and represent a
reservoir of autoreactive B cells [42]. The cohort of patients
analyzed here did not show any overt sign of autoimmunity,
probably due to their young age. However, the analysis of serum
autoantibodies performed in four patients showed positivity for
anti-nuclear antibodies in three patients. One of them also showed
the presence of anti-platelet antibodies (data not shown). Impor-
tantly, an increased frequency of CD21°% B cells was observed.
These cells are enriched in anergic autoreactive clones [26] and
expanded in systemic lupus erythematosus (SLE), rheumatoid
arthritis and in common variable immunodeficiency groupla pa-
tients developing autoimmune syndromes [26,28]. BAFF levels and
signals through BAFFR coordinate the maintenance of the primary
B-cell pool and the fate of self-reactive B cells [30]. Herein, we
report for the first time increased BAFF levels and decreased BAFFR
expression in WAS patients. Elevated BAFF serum levels are often
present in immunodeficiencies [43], autoimmune diseases [44,45]
and viral infections [46] and may lower the thresholds for the
survival of autoreactive B cell clones [30]. The enrichment of
CD21'°% B cells and the alterations in BAFF levels and expression of
its receptor suggest that the mechanisms of B-cell selection could
be altered in WAS patients. Our data also suggest the presence of a
defective selection of WAS B cells producing high-affinity anti-
bodies. Indeed, we noticed a restricted or null presence of IGHV3-
48 and IGHV4-59 gene families and a preferential usage of
IGHV3-30 and IGHV4-34. In particular, IGHV3-48 gene is selectively
used against polysaccharide antigens [47] and its decrease in WAS
could account for an inefficient antibody response. In contrast,
IGHV3-30 is highly represented among anti-platelet autoantibodies
from patients with idiopathic thrombocytopenic purpura [48] and
in SLE patients [49]. Additionally, IGHV4-34 — encoded antibodies
are intrinsically autoreactive when unmutated [35,50], as observed
in our patients. This peculiar antibody repertoire reflects an altered
selection of both protective and autoreactive Ig gene families. The
perturbation of B-cell homeostasis present in WAS patients sup-
ports the administration of anti-CD20 mAb in the conditioning
regimen of gene therapy to deplete B cells [51].

In the memory B-cell compartment, the frequency of isotype-
switched IgG™ B cells was found normal in WAS patients, despite
a deficit of CD27* B cells [17]. We observed a normal frequency of
memory B cells and of switched CD27"IgG" and CD27"IgA™ B cells
in our cohort of WAS patients. This suggests that T-cell dependent
antigen response is induced normally in WAS patients. In contrast,
the frequency and the SHM level of TI memory B-cell subsets were
reduced, likely due to their reduced in vivo proliferation. The
marked reduction in the natural effector B-cell subset, resembling
marginal zone B cells in the spleen, mirrors the decreased number
of splenic marginal zone B cells and the histological defects in the
marginal zone area of the spleen already described in Was™~/~ mice
[9,52,53] and patients [54]. In addition, both the reduction in nat-
ural effector and IgA"™CD27~ B cells, which are generated during TI
responses, provide evidence of a defect in B-cell function inde-
pendent from the cross-talk with T lymphocytes.

The mutational status of both heavy and light Ig chains is
reduced in WAS in presence of a diminished rate of proliferation in
the total memory B-cell pool. In addition, the analysis of Ig gene
selection showed a preferential use of IGH-proximal genes (IGHG1
and IGHG3) accompanied by reduced SHM suggesting that WAS B
cells have undergone less GC reactions [33]. Reduced IgG2

switching in WAS patients could account for the poor response to Tl
antigens which is typical of the syndrome [15]. The cytokine profile
of WAS patients shows an impairment in the production of Thi
cytokines [7] that could explain their reduced switching to IgG2
subclass. Moreover, the isotype-switching outcome is also influ-
enced by two additional factors: cell division [55] and antibody
affinity to antigens [56]. The defective proliferation of memory and
natural effector B cells and the reduced affinity maturation found in
WAS might contribute to these alterations in class switching.

Our results in WAS patients show an early egress of immature B
cells from BM leading to an overrepresentation of transitional B
cells in the periphery. The memory compartment is characterized
by a reduced maturation status that could affect the B-cell effector
functions contributing to a lower clearance of pathogens and
leading to chronic inflammation that can break tolerance.

In conclusion, our results add novel immunological features of
WAS B-cell phenotype that can complement the evaluation of the
efficacy of various treatment approaches.
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