716 research outputs found
Increased atmospheric carbon dioxide and climate feedback mechanisms
As a consequence of fossil fuel burning, the atmospheric concentration of carbon dioxide has increased from 314 ppm in 1958, when detailed measurements of this quantity began, to a present value of 335 ppm; and it is estimated that during the next century, the CO2 concentration will double relative to its assumed preindustrial value of 290 ppm. Since CO2 is an infrared-active gas, increases in its atmospheric concentration would lead to a larger infrared opacity for the atmospheric which, by normal logic, would result in a warmer Earth. A number of modeling endeavors suggest a 2 to 4 C increase in global mean surface temperature with doubling of the CO2 concentration. But such estimates of CO2-induced warming are highly uncertain because of a lack of knowledge of climate feedback mechanisms. Interactive influences upon the solar and infrared opacities of the Earth-atmosphere system can either amplify or damp a climate-forcing mechanism such as increasing CO2. Climate feedback mechanisms discussed include climate sensitivity, cloudiness-radiation feedback, climate change predictions, and interactive atmospheric chemistry
An Improved Algorithm for Retrieving Surface Downwelling Longwave Radiation from Satellite Measurements
Zhou and Cess [2001] developed an algorithm for retrieving surface downwelling longwave radiation (SDLW) based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near the surface tend to be extremely cold and dry. Systematic errors were also found for scenes that were covered with ice clouds. An improved version of the algorithm prevents the large errors in the SDLW at low water vapor amounts by taking into account that under such conditions the SDLW and water vapor amount are nearly linear in their relationship. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths available from the Cloud and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) product to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for Terra and Aqua satellites. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing and will be incorporated as one of the CERES empirical surface radiation algorithms
Warming the early Earth - CO2 reconsidered
Despite a fainter Sun, the surface of the early Earth was mostly ice-free.
Proposed solutions to this so-called "faint young Sun problem" have usually
involved higher amounts of greenhouse gases than present in the modern-day
atmosphere. However, geological evidence seemed to indicate that the
atmospheric CO2 concentrations during the Archaean and Proterozoic were far too
low to keep the surface from freezing. With a radiative-convective model
including new, updated thermal absorption coefficients, we found that the
amount of CO2 necessary to obtain 273 K at the surface is reduced up to an
order of magnitude compared to previous studies. For the late Archaean and
early Proterozoic period of the Earth, we calculate that CO2 partial pressures
of only about 2.9 mb are required to keep its surface from freezing which is
compatible with the amount inferred from sediment studies. This conclusion was
not significantly changed when we varied model parameters such as relative
humidity or surface albedo, obtaining CO2 partial pressures for the late
Archaean between 1.5 and 5.5 mb. Thus, the contradiction between sediment data
and model results disappears for the late Archaean and early Proterozoic.Comment: 53 pages, 4 tables, 11 figures, published in Planetary and Space
Scienc
The Ocean's Role in Continental Climate Variability and Change
A characteristic feature of global warming is the land-sea contrast, with stronger warming over land than over oceans. Recent studies find that this land-sea contrast also exists in equilibrium global change scenarios, and it is caused by differences in the availability of surface moisture over land and oceans. In this study it is illustrated that this land-sea contrast exists also on interannual time scales and that the ocean-land interaction is strongly asymmetric. The land surface temperature is more sensitive to the oceans than the oceans are to the land surface temperature, which is related to the processes causing the land-sea contrast in global warming scenarios. It suggests that the ocean's natural variability and change is leading to variability and change with enhanced magnitudes over the continents, causing much of the longer-time-scale (decadal) global-scale continental climate variability. Model simulations illustrate that continental warming due to anthropogenic forcing (e. g., the warming at the end of the last century or future climate change scenarios) is mostly (80%-90%) indirectly forced by the contemporaneous ocean warming, not directly by local radiative forcing
On climate response to changes in the cosmic ray flux and radiative budget
We examine the results linking cosmic ray flux (CRF) variations to global
climate change. We then proceed to study various periods over which there are
estimates for the radiative forcing, temperature change and CRF variations
relative to today. These include the Phanerozoic as a whole, the Cretaceous,
the Eocene, the Last Glacial Maximum, the 20th century, as well as the 11-yr
solar cycle. This enables us to place quantitative limits on climate
sensitivity to both changes in the CRF, Phi_CR, and the radiative budget, F,
under equilibrium. Under the assumption that the CRF is indeed a climate
driver, we find that the sensitivity to CRF variations is consistently fitted
with mu := -Phi_0 (dT_global/ d Phi_CR) = 6.5 +/- 2.5 K (where Phi_0 is the CR
energy flux today). Additionally, the sensitivity to radiative forcing changes
is lambda := dT_global/ dF_0 = 0.35 +/- 0.09 K/(W/m^2), at the current
temperature, while its temperature derivative is negligible with d lambda /
dT_0 = 0.01 +/- 0.03 1/(W/m^2). If the observed CRF/climate link is ignored,
the best sensitivity obtained is lambda = 0.54 +/- 0.12 K/(W/m^2) and d lambda
/ dT_0 = -0.02 +/- 0.05 1/(W/m^2). The CRF/climate link therefore implies that
the increased solar luminosity and reduced CRF over the previous century should
have contributed a warming of 0.37+/-0.13 K, while the rest should be mainly
attributed to anthropogenic causes. Without any effect of cosmic rays, the
increase in solar luminosity would correspond to an increased temperature of
0.16+/-0.04 K.Comment: 12 pages, 7 figures, submitted to JGR-Atmosphere
Trends in World Communication
In today's world communication four major trends can be observed: digitization, consolidation, deregulation, and globalization. It should be a priority on our research agendas to question how these developments affect people's lives across the globe
The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM
Using a comprehensive atmospheric GCM coupled to a slab mixed layer ocean, experiments are performed to study the mechanism by which displacements of the intertropical convergence zone (ITCZ) are forced from the extratropics. The northern extratropics are cooled and the southern extratropics are warmed by an imposed cross-equatorial flux beneath the mixed layer, forcing a southward shift in the ITCZ. The ITCZ displacement can be understood in terms of the degree of compensation between the imposed oceanic flux and the resulting response in the atmospheric energy transport in the tropics. The magnitude of the ITCZ displacement is very sensitive to a parameter in the convection scheme that limits the entrainment into convective plumes. The change in the convection scheme affects the extratropical-tropical interactions in the model primarily by modifying the cloud response. The results raise the possibility that the response of tropical precipitation to extratropical thermal forcing, important for a variety of problems in climate dynamics (such as the response of the tropics to the Northern Hemisphere ice sheets during glacial maxima or to variations in the Atlantic meridional overturning circulation), may be strongly dependent on cloud feedback. The model configuration described here is suggested as a useful benchmark helping to quantify extratropical-tropical interactions in atmospheric models.open988
POLDER observations of cloud bidirectional reflectances compared to a plane-parallel model using the International Satellite Cloud Climatology Project cloud phase functions
International audienceThis study investigates the validity of the plane-parallel cloud model and in addition the suitability of water droplet and ice polycrystal phase functions for stratocumulus and cirrus clouds, respectively. To do that, we take advantage of the multidirectional viewing capability of the Polarization and Directionality of the Earth's Reflectances (POLDER) instrument which allows us to characterize the anisotropy of the reflected radiation field. We focus on the analysis of airborne-POLDER data acquired over stratocumulus and cirrus clouds during two selected flights (on April 17 and April 18, 1994) of the European Cloud and Radiation Experiment (EUCREX'94) campaign. The bidirectional reflectances measured in the 0.86 μm channel are compared to plane-parallel cloud simulations computed with the microphysical models used by the International Satellite Cloud Climatology Project (ISCCP). Although clouds are not homogeneous plane-parallel layers, the extended cloud layers under study appear to act, on average, as a homogeneous plane-parallel layer. The standard water droplet model (with an effective radius of 10 μm) used in the ISCCP analysis seems to be suitable for stratocumulus clouds. The relative root-mean-square difference between the observed bidirectional reflectances and the model is only 2%. For cirrus clouds, the water droplet cloud model is definitely inadequate since the rms difference rises to 9%; when the ice polycrystal model chosen for the reanalysis of ISCCP data is used instead, the rms difference is reduced to 3%
The Surface Radiation Budget and Cloud Climate Interactions as a Part of CERES
Work that has been completed is described in reprints and preprints, and summaries in terms of broad categories are given as follows: (1) The Relationship between Surface and Satellite Shortwave Radiative Fluxes; (2) Cloud-Climate Interactions in Atmospheric General Circulation Models; (3) Absorption of Shortwave radiation by clouds; (4) Clear-sky atmospheres shortwave radiation; and (5) Surface shortwave radiation measurements
- …
