83 research outputs found

    Nanostructured rigid polyurethane foams with improved specific thermo-mechanical properties using Bacterial Nanocellulose as a Hard Segment

    Full text link
    Bacterial nanocellulose (BNC) was used to synthesize rigid polyurethane foams (RPUFs) based on its reaction with the isocyanate precursor (ISO route) and also by using the conventional procedure (POL route). The results indicated that at only 0.1 wt. % of BNC, drastic improvements of specific elastic compressive modulus (+244.2 %) and strength (+77.5 %) were found. The reaction of BNC with the precursor was corroborated through the measurement of isocyanate number and the BNC caused a significant nucleation effect, decreasing the cell size up to 39.7%. DSC analysis revealed that the BNC had a strong effect on post-cure enthalpy, decreasing its value when the ISO route was implemented. DMA analysis revealed that the RPUFs developed using the ISO route proved to have an improved damping factor, regardless of BNC concentration. These results emphasize the importance of using the ISO route to achieve foamed nanocomposites with improved specific mechanical properties

    Partial Covering Arrays: Algorithms and Asymptotics

    Full text link
    A covering array CA(N;t,k,v)\mathsf{CA}(N;t,k,v) is an N×kN\times k array with entries in {1,2,
,v}\{1, 2, \ldots , v\}, for which every N×tN\times t subarray contains each tt-tuple of {1,2,
,v}t\{1, 2, \ldots , v\}^t among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound CAN(t,k,v)\mathsf{CAN}(t,k,v), the minimum number NN of rows of a CA(N;t,k,v)\mathsf{CA}(N;t,k,v). The well known bound CAN(t,k,v)=O((t−1)vtlog⁥k)\mathsf{CAN}(t,k,v)=O((t-1)v^t\log k) is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set {1,2,
,v}t\{1, 2, \ldots , v\}^t need only be contained among the rows of at least (1−ϔ)(kt)(1-\epsilon)\binom{k}{t} of the N×tN\times t subarrays and (2) the rows of every N×tN\times t subarray need only contain a (large) subset of {1,2,
,v}t\{1, 2, \ldots , v\}^t. In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time

    ECOSTRESS: NASA's next generation mission to measure evapotranspiration from the International Space Station

    Get PDF
    The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station ECOSTRESS) was launched to the International Space Station on June 29, 2018. The primary science focus of ECOSTRESS is centered on evapotranspiration (ET), which is produced as level‐3 (L3) latent heat flux (LE) data products. These data are generated from the level‐2 land surface temperature and emissivity product (L2_LSTE), in conjunction with ancillary surface and atmospheric data. Here, we provide the first validation (Stage 1, preliminary) of the global ECOSTRESS clear‐sky ET product (L3_ET_PT‐JPL, version 6.0) against LE measurements at 82 eddy covariance sites around the world. Overall, the ECOSTRESS ET product performs well against the site measurements (clear‐sky instantaneous/time of overpass: r2 = 0.88; overall bias = 8%; normalized RMSE = 6%). ET uncertainty was generally consistent across climate zones, biome types, and times of day (ECOSTRESS samples the diurnal cycle), though temperate sites are over‐represented. The 70 m high spatial resolution of ECOSTRESS improved correlations by 85%, and RMSE by 62%, relative to 1 km pixels. This paper serves as a reference for the ECOSTRESS L3 ET accuracy and Stage 1 validation status for subsequent science that follows using these data

    Block copolymer synthesis by controlled/living radical polymerisation in heterogeneous systems

    Full text link

    Influence of Îł-radiation on some of the biochemical properties of soil

    No full text
    • 

    corecore